cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318737 Numbers n=2*k-1 where Sum_{j=1..k} (-1)^(j+1) * d(2*j-1) achieves a new record, with d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 9, 25, 49, 85, 133, 169, 225, 445, 845, 973, 1125, 2205, 2209, 2469, 2829, 7929, 9429, 9945, 23569, 24073, 24645, 26145, 40425, 68153, 71289, 72413, 89517, 112233, 112245, 128973, 162405, 162409, 162429, 297073, 477489, 477493, 502713, 561253
Offset: 1

Views

Author

Hugo Pfoertner, Sep 05 2018

Keywords

Examples

			a(2) = 9, because s = d(1)-d(3)+d(5)-d(7)+d(9) = 1-2+2-2+3 = 2 exceeds d(1)=1, d(1)-d(3)=-1, d(1)-d(3)+d(5)=1, d(1)-d(3)+d(5)-d(7)=-1.
		

Crossrefs

Programs

  • PARI
    s=0;smax=0;j=-1;forstep(k=1,600000,2,j=-j;s=s+j*numdiv(k);if(s>smax,smax=s;print1(k,", ")))