A318745 Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and adjacent parts (including the last with the first part) being coprime.
1, 1, 2, 3, 5, 7, 12, 19, 32, 53, 94, 158, 279, 480, 847, 1487, 2647, 4676, 8349, 14865, 26630, 47700, 85778, 154290, 278318, 502437, 908880, 1645713, 2984546, 5417743, 9847189, 17914494, 32625523, 59467893, 108493134, 198089610, 361965238, 661883231, 1211161991
Offset: 1
Keywords
Examples
The a(7) = 12 Lyndon compositions with adjacent parts coprime: (7) (16) (25) (34) (115) (1114) (1213) (1132) (1123) (11113) (11212) (111112)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,LyndonQ[#]&&And@@CoprimeQ@@@Partition[#,2,1,1]]&]],{n,20}]
-
PARI
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]} seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->gcd(i, j)==1))); vector(n, n, (n > 1) + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019
Formula
a(n) = A328669(n) + 1 for n > 1. - Andrew Howroyd, Nov 01 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018