A318746 Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and successive parts (including the last with the first part) being indivisible.
1, 1, 1, 1, 2, 1, 3, 2, 4, 5, 6, 8, 11, 17, 20, 29, 41, 56, 79, 107, 155, 214, 305, 422, 604, 850, 1207, 1709, 2424, 3439, 4905, 6972, 9949, 14171, 20268, 28915, 41392, 59176, 84790, 121428, 174163, 249760, 358578, 514873, 739910, 1063523, 1529767, 2200926
Offset: 1
Keywords
Examples
The a(14) = 17 Lyndon compositions with successive parts indivisible: (14) (3,11) (4,10) (5,9) (6,8) (2,3,9) (2,5,7) (2,7,5) (3,4,7) (3,6,5) (3,7,4) (2,3,2,7) (2,3,4,5) (2,4,3,5) (2,4,5,3) (2,5,4,3) (2,3,2,4,3)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,LyndonQ[#]&&And@@Not/@Divisible@@@Partition[#,2,1,1]]&]],{n,20}]
-
PARI
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]} seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->i%j<>0))); vector(n, n, 1 + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018