A318747 Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and adjacent parts (including the last with the first part) being indivisible (either way).
1, 1, 1, 1, 2, 1, 3, 2, 3, 5, 5, 8, 7, 12, 14, 20, 31, 37, 51, 64, 96, 129, 177, 246, 328, 465, 630, 889, 1230, 1692, 2370, 3250, 4587, 6354, 8895, 12384, 17252, 24180, 33777, 47336, 66254, 92752, 130142, 182337, 256246, 359500, 505231, 709787, 997951, 1403883
Offset: 1
Keywords
Examples
The a(14) = 12 Lyndon compositions with adjacent parts indivisible either way: (14) (3,11) (4,10) (5,9) (6,8) (2,5,7) (2,7,5) (3,4,7) (3,7,4) (2,3,2,7) (2,3,4,5) (2,5,4,3)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,And[LyndonQ[#],And@@Not/@Divisible@@@Partition[#,2,1,1],And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]]]&]],{n,20}]
-
PARI
b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]} seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->i%j<>0 && j%i<>0))); vector(n, n, 1 + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018