cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318747 Number of Lyndon compositions (aperiodic necklaces of positive integers) with sum n and adjacent parts (including the last with the first part) being indivisible (either way).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 3, 5, 5, 8, 7, 12, 14, 20, 31, 37, 51, 64, 96, 129, 177, 246, 328, 465, 630, 889, 1230, 1692, 2370, 3250, 4587, 6354, 8895, 12384, 17252, 24180, 33777, 47336, 66254, 92752, 130142, 182337, 256246, 359500, 505231, 709787, 997951, 1403883
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(14) = 12 Lyndon compositions with adjacent parts indivisible either way:
  (14)
  (3,11) (4,10) (5,9) (6,8)
  (2,5,7) (2,7,5) (3,4,7) (3,7,4)
  (2,3,2,7) (2,3,4,5) (2,5,4,3)
		

Crossrefs

Programs

  • Mathematica
    LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Length[#]==1,And[LyndonQ[#],And@@Not/@Divisible@@@Partition[#,2,1,1],And@@Not/@Divisible@@@Reverse/@Partition[#,2,1,1]]]&]],{n,20}]
  • PARI
    b(n, q, pred)={my(M=matrix(n, n)); for(k=1, n, M[k, k]=pred(q, k); for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); M[q, ]}
    seq(n)={my(v=sum(k=1, n, k*b(n, k, (i, j)->i%j<>0 && j%i<>0))); vector(n, n, 1 + sumdiv(n, d, moebius(d)*v[n/d])/n)} \\ Andrew Howroyd, Nov 01 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 08 2018