cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318749 Number of pairwise relatively nonprime strict factorizations of n (no two factors are coprime).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 5, 2, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 7, 1, 2, 2, 3, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Oct 08 2018

Examples

			The a(96) = 7 factorizations are (96), (2*48), (4*24), (6*16), (8*12), (2*4*12), (2*6*8).
The a(480) = 18 factorizations:
  (480)
  (2*240) (4*120) (6*80) (8*60) (10*48) (12*40) (16*30) (20*24)
  (2*4*60) (2*6*40) (2*8*30) (2*10*24) (2*12*20) (4*6*20) (4*10*12) (6*8*10)
  (2*4*6*10)
		

Crossrefs

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[strfacs[n/d],Min@@#1>d&],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[strfacs[n],And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]&]],{n,50}]
  • PARI
    A318749(n, m=n, facs=List([])) = if(1==n, (1!=gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A318749(n/d, d-1, newfacs))); (s)); \\ Antti Karttunen, Oct 08 2018

Extensions

More terms from Antti Karttunen, Oct 08 2018