A318749 Number of pairwise relatively nonprime strict factorizations of n (no two factors are coprime).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 5, 2, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 7, 1, 2, 2, 3, 1, 1, 1, 3, 1
Offset: 1
Keywords
Examples
The a(96) = 7 factorizations are (96), (2*48), (4*24), (6*16), (8*12), (2*4*12), (2*6*8). The a(480) = 18 factorizations: (480) (2*240) (4*120) (6*80) (8*60) (10*48) (12*40) (16*30) (20*24) (2*4*60) (2*6*40) (2*8*30) (2*10*24) (2*12*20) (4*6*20) (4*10*12) (6*8*10) (2*4*6*10)
Links
Crossrefs
Programs
-
Mathematica
strfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[strfacs[n/d],Min@@#1>d&],{d,Rest[Divisors[n]]}]]; Table[Length[Select[strfacs[n],And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]&]],{n,50}]
-
PARI
A318749(n, m=n, facs=List([])) = if(1==n, (1!=gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A318749(n/d, d-1, newfacs))); (s)); \\ Antti Karttunen, Oct 08 2018
Extensions
More terms from Antti Karttunen, Oct 08 2018
Comments