A318753 Number A(n,k) of rooted trees with n nodes such that no more than k subtrees extending from the same node have the same number of nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 51, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 111, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 457, 240, 0
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 2, 3, 4, 4, 4, 4, 4, 4, ... 0, 3, 7, 8, 9, 9, 9, 9, 9, ... 0, 6, 15, 18, 19, 20, 20, 20, 20, ... 0, 12, 34, 43, 46, 47, 48, 48, 48, ... 0, 25, 79, 102, 110, 113, 114, 115, 115, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
Crossrefs
Programs
-
Maple
g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( binomial(A(i, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i)))) end: A:= (n, k)-> g(n-1$2, k): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
g[n_, i_, k_] := g[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*g[n - i*j, i - 1, k], {j, 0, Min[k, n/i]}]]]; A[n_, k_] := g[n - 1, n - 1, k]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)