cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318753 Number A(n,k) of rooted trees with n nodes such that no more than k subtrees extending from the same node have the same number of nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 51, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 111, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 457, 240, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2018

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,   0,   0,   0,   0,   0,   0, ...
  1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  2,   2,   2,   2,   2,   2,   2, ...
  0,  2,  3,   4,   4,   4,   4,   4,   4, ...
  0,  3,  7,   8,   9,   9,   9,   9,   9, ...
  0,  6, 15,  18,  19,  20,  20,  20,  20, ...
  0, 12, 34,  43,  46,  47,  48,  48,  48, ...
  0, 25, 79, 102, 110, 113, 114, 115, 115, ...
		

Crossrefs

Rows n=0-2 give: A000004, A000012, A057427.
Main diagonal gives A000081.
Cf. A318754.

Programs

  • Maple
    g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(A(i, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
        end:
    A:= (n, k)-> g(n-1$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    g[n_, i_, k_] := g[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*g[n - i*j, i - 1, k], {j, 0, Min[k, n/i]}]]];
    A[n_, k_] := g[n - 1, n - 1, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} A318754(n,j) for n > 0.
A(n,n+j) = A000081(n) for j >= -1.