cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318757 Number A(n,k) of rooted trees with n nodes such that no more than k isomorphic subtrees extend from the same node; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 52, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 113, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 459, 247, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2018

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,   0,   0,   0,   0,   0,   0, ...
  1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  2,   2,   2,   2,   2,   2,   2, ...
  0,  2,  3,   4,   4,   4,   4,   4,   4, ...
  0,  3,  7,   8,   9,   9,   9,   9,   9, ...
  0,  6, 15,  18,  19,  20,  20,  20,  20, ...
  0, 12, 34,  43,  46,  47,  48,  48,  48, ...
  0, 25, 79, 102, 110, 113, 114, 115, 115, ...
		

Crossrefs

Main diagonal gives A000081.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 11 2019, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} A318758(n,j) for n > 0.
A(n,n+j) = A000081(n) for j >= -1.