A318757 Number A(n,k) of rooted trees with n nodes such that no more than k isomorphic subtrees extend from the same node; square array A(n,k), n>=0, k>=0, read by antidiagonals.
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 52, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 113, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 459, 247, 0
Offset: 0
Examples
Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 2, 3, 4, 4, 4, 4, 4, 4, ... 0, 3, 7, 8, 9, 9, 9, 9, 9, ... 0, 6, 15, 18, 19, 20, 20, 20, 20, ... 0, 12, 34, 43, 46, 47, 48, 48, 48, ... 0, 25, 79, 102, 110, 113, 114, 115, 115, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
Crossrefs
Programs
-
Maple
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t), `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m)))) end: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i))) end: A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]]; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]]; A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 11 2019, after Alois P. Heinz *)