cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A318757 Number A(n,k) of rooted trees with n nodes such that no more than k isomorphic subtrees extend from the same node; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 52, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 113, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 459, 247, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2018

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,   0,   0,   0,   0,   0,   0, ...
  1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  2,   2,   2,   2,   2,   2,   2, ...
  0,  2,  3,   4,   4,   4,   4,   4,   4, ...
  0,  3,  7,   8,   9,   9,   9,   9,   9, ...
  0,  6, 15,  18,  19,  20,  20,  20,  20, ...
  0, 12, 34,  43,  46,  47,  48,  48,  48, ...
  0, 25, 79, 102, 110, 113, 114, 115, 115, ...
		

Crossrefs

Main diagonal gives A000081.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 11 2019, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} A318758(n,j) for n > 0.
A(n,n+j) = A000081(n) for j >= -1.

A255705 Number of 2n+1-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals n+1.

Original entry on oeis.org

1, 1, 3, 8, 22, 60, 167, 465, 1306, 3681, 10422, 29597, 84313, 240757, 689035, 1975753, 5675145, 16326198, 47032200, 135658367, 391733593, 1132357784, 3276330780, 9487885056, 27497891241, 79753806451, 231474005120, 672250119756, 1953523496677, 5680002466125
Offset: 0

Views

Author

Alois P. Heinz, Mar 02 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
          `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
        end:
    a:= a-> g(2*n, n+1) -`if`(n=0, 0, g(2*n, n)):
    seq(a(n), n=0..40);
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1, k] - If[# == k, 1, 0]) &]*g[n - j, k], {j, 1, n}]/n];
    a[n_] :=  g[2n, n+1] - If[n == 0, 0, g[2n, n]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

a(n) = A255704(2*n+1,n+1).
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.955765285651994974714817524... and c = 0.70755335886284109851526791506579... . - Vaclav Kotesovec, Feb 28 2016
a(n) = A318754(2n+2,n+1) = A318758(2n+2,n+1). - Alois P. Heinz, Sep 02 2018

A318859 Number of rooted trees with n nodes such that two equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 4, 9, 22, 54, 138, 346, 889, 2285, 5928, 15436, 40424, 106230, 280305, 741912, 1969816, 5243942, 13995807, 37439883, 100371907, 269623436, 725638613, 1956352468, 5283171593, 14289645110, 38707131195, 104995130162, 285184002486, 775586517781
Offset: 2

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=2 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(2):
    seq(a(n), n=2..32);
  • Mathematica
    h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t],
       If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
       Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]];
    a[n_] := A[n, 2] - A[n, 1];
    Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Dec 01 2023, after Alois P. Heinz *)

A318860 Number of rooted trees with n nodes such that three equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 3, 9, 23, 60, 164, 443, 1209, 3319, 9150, 25326, 70335, 195870, 546823, 1529935, 4288662, 12042447, 33866604, 95373852, 268925258, 759157224, 2145298117, 6068251826, 17180172176, 48680092670, 138041661905, 391725281701, 1112360700816, 3160707529077
Offset: 3

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=3 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(3):
    seq(a(n), n=3..33);

A318861 Number of rooted trees with n nodes such that four equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 3, 8, 23, 61, 167, 461, 1285, 3587, 10069, 28350, 80101, 226861, 644064, 1832113, 5221138, 14902620, 42597586, 121917123, 349343846, 1002080752, 2877234480, 8268665140, 23782254063, 68454314588, 197176382059, 568320901793, 1639070974728, 4729877188814
Offset: 4

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=4 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(4):
    seq(a(n), n=4..34);

A318862 Number of rooted trees with n nodes such that five equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 3, 8, 22, 61, 168, 465, 1302, 3659, 10329, 29247, 83076, 236567, 675191, 1930857, 5531409, 15870783, 45600643, 131187583, 377844713, 1089401822, 3143970659, 9081351051, 26252708661, 75949137535, 219873546468, 636947053248, 1846268556446, 5354642063044
Offset: 5

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=5 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(5):
    seq(a(n), n=5..35);

A318863 Number of rooted trees with n nodes such that six equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 3, 8, 22, 60, 168, 466, 1306, 3677, 10400, 29503, 83964, 239523, 684855, 1961933, 5630300, 16182535, 46576693, 134225427, 387254945, 1118433179, 3233228736, 9354963666, 27089288339, 78501221909, 227643444368, 660560681614, 1917918979943, 5571738217340
Offset: 6

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=6 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(6):
    seq(a(n), n=6..36);

A318864 Number of rooted trees with n nodes such that seven equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 3, 8, 22, 60, 167, 466, 1307, 3681, 10418, 29575, 84219, 240407, 687802, 1971576, 5661335, 16281377, 46888590, 135202932, 390300559, 1127877757, 3262398334, 9444747407, 27364824226, 79344643855, 230219356666, 668412171376, 1941808202980, 5644309042885
Offset: 7

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=7 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(7):
    seq(a(n), n=7..37);

A318865 Number of rooted trees with n nodes such that eight equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 3, 8, 22, 60, 167, 465, 1307, 3682, 10422, 29593, 84291, 240663, 688685, 1974519, 5670969, 16312391, 46987389, 135514781, 391278211, 1130924824, 3271850658, 9473951229, 27454745755, 79620703854, 231064697016, 670994912068, 1949683485967, 5668279789793
Offset: 8

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=8 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(8):
    seq(a(n), n=8..38);

A318866 Number of rooted trees with n nodes such that nine equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 3, 8, 22, 60, 167, 465, 1306, 3682, 10423, 29597, 84309, 240735, 688941, 1975403, 5673911, 16322021, 47018394, 135613559, 391590017, 1131902426, 3274897873, 9483405008, 27483957321, 79710659583, 231340894684, 671840776074, 1952268143504, 5676161896298
Offset: 9

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=9 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(9):
    seq(a(n), n=9..39);
Showing 1-10 of 11 results. Next