A318757
Number A(n,k) of rooted trees with n nodes such that no more than k isomorphic subtrees extend from the same node; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 3, 3, 0, 0, 1, 1, 2, 4, 7, 6, 0, 0, 1, 1, 2, 4, 8, 15, 12, 0, 0, 1, 1, 2, 4, 9, 18, 34, 25, 0, 0, 1, 1, 2, 4, 9, 19, 43, 79, 52, 0, 0, 1, 1, 2, 4, 9, 20, 46, 102, 190, 113, 0, 0, 1, 1, 2, 4, 9, 20, 47, 110, 250, 459, 247, 0
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 2, 3, 4, 4, 4, 4, 4, 4, ...
0, 3, 7, 8, 9, 9, 9, 9, 9, ...
0, 6, 15, 18, 19, 20, 20, 20, 20, ...
0, 12, 34, 43, 46, 47, 48, 48, 48, ...
0, 25, 79, 102, 110, 113, 114, 115, 115, ...
Columns k=0-10 give:
A063524,
A004111,
A248869,
A318850,
A318851,
A318852,
A318853,
A318854,
A318855,
A318856,
A318857.
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 11 2019, after Alois P. Heinz *)
A255705
Number of 2n+1-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals n+1.
Original entry on oeis.org
1, 1, 3, 8, 22, 60, 167, 465, 1306, 3681, 10422, 29597, 84313, 240757, 689035, 1975753, 5675145, 16326198, 47032200, 135658367, 391733593, 1132357784, 3276330780, 9487885056, 27497891241, 79753806451, 231474005120, 672250119756, 1953523496677, 5680002466125
Offset: 0
-
with(numtheory):
g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
`if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
end:
a:= a-> g(2*n, n+1) -`if`(n=0, 0, g(2*n, n)):
seq(a(n), n=0..40);
-
g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1, k] - If[# == k, 1, 0]) &]*g[n - j, k], {j, 1, n}]/n];
a[n_] := g[2n, n+1] - If[n == 0, 0, g[2n, n]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)
A318859
Number of rooted trees with n nodes such that two equals the maximal number of isomorphic subtrees extending from the same node.
Original entry on oeis.org
0, 1, 1, 4, 9, 22, 54, 138, 346, 889, 2285, 5928, 15436, 40424, 106230, 280305, 741912, 1969816, 5243942, 13995807, 37439883, 100371907, 269623436, 725638613, 1956352468, 5283171593, 14289645110, 38707131195, 104995130162, 285184002486, 775586517781
Offset: 2
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(2):
seq(a(n), n=2..32);
-
h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t],
If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]];
a[n_] := A[n, 2] - A[n, 1];
Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Dec 01 2023, after Alois P. Heinz *)
A318860
Number of rooted trees with n nodes such that three equals the maximal number of isomorphic subtrees extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 9, 23, 60, 164, 443, 1209, 3319, 9150, 25326, 70335, 195870, 546823, 1529935, 4288662, 12042447, 33866604, 95373852, 268925258, 759157224, 2145298117, 6068251826, 17180172176, 48680092670, 138041661905, 391725281701, 1112360700816, 3160707529077
Offset: 3
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(3):
seq(a(n), n=3..33);
A318861
Number of rooted trees with n nodes such that four equals the maximal number of isomorphic subtrees extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 23, 61, 167, 461, 1285, 3587, 10069, 28350, 80101, 226861, 644064, 1832113, 5221138, 14902620, 42597586, 121917123, 349343846, 1002080752, 2877234480, 8268665140, 23782254063, 68454314588, 197176382059, 568320901793, 1639070974728, 4729877188814
Offset: 4
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(4):
seq(a(n), n=4..34);
A318862
Number of rooted trees with n nodes such that five equals the maximal number of isomorphic subtrees extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 61, 168, 465, 1302, 3659, 10329, 29247, 83076, 236567, 675191, 1930857, 5531409, 15870783, 45600643, 131187583, 377844713, 1089401822, 3143970659, 9081351051, 26252708661, 75949137535, 219873546468, 636947053248, 1846268556446, 5354642063044
Offset: 5
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(5):
seq(a(n), n=5..35);
A318863
Number of rooted trees with n nodes such that six equals the maximal number of isomorphic subtrees extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 60, 168, 466, 1306, 3677, 10400, 29503, 83964, 239523, 684855, 1961933, 5630300, 16182535, 46576693, 134225427, 387254945, 1118433179, 3233228736, 9354963666, 27089288339, 78501221909, 227643444368, 660560681614, 1917918979943, 5571738217340
Offset: 6
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(6):
seq(a(n), n=6..36);
A318864
Number of rooted trees with n nodes such that seven equals the maximal number of isomorphic subtrees extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 60, 167, 466, 1307, 3681, 10418, 29575, 84219, 240407, 687802, 1971576, 5661335, 16281377, 46888590, 135202932, 390300559, 1127877757, 3262398334, 9444747407, 27364824226, 79344643855, 230219356666, 668412171376, 1941808202980, 5644309042885
Offset: 7
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(7):
seq(a(n), n=7..37);
A318865
Number of rooted trees with n nodes such that eight equals the maximal number of isomorphic subtrees extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 60, 167, 465, 1307, 3682, 10422, 29593, 84291, 240663, 688685, 1974519, 5670969, 16312391, 46987389, 135514781, 391278211, 1130924824, 3271850658, 9473951229, 27454745755, 79620703854, 231064697016, 670994912068, 1949683485967, 5668279789793
Offset: 8
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(8):
seq(a(n), n=8..38);
A318866
Number of rooted trees with n nodes such that nine equals the maximal number of isomorphic subtrees extending from the same node.
Original entry on oeis.org
0, 1, 1, 3, 8, 22, 60, 167, 465, 1306, 3682, 10423, 29597, 84309, 240735, 688941, 1975403, 5673911, 16322021, 47018394, 135613559, 391590017, 1131902426, 3274897873, 9483405008, 27483957321, 79710659583, 231340894684, 671840776074, 1952268143504, 5676161896298
Offset: 9
-
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
a:= n-> (k-> A(n, k)-A(n, k-1))(9):
seq(a(n), n=9..39);
Showing 1-10 of 11 results.