cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318774 Coefficients in expansion of 1/(1 - x - 3*x^4).

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 10, 13, 25, 46, 76, 115, 190, 328, 556, 901, 1471, 2455, 4123, 6826, 11239, 18604, 30973, 51451, 85168, 140980, 233899, 388252, 643756, 1066696, 1768393, 2933149, 4864417, 8064505, 13369684, 22169131, 36762382, 60955897, 101064949, 167572342, 277859488, 460727179, 763922026, 1266639052
Offset: 0

Views

Author

Zagros Lalo, Sep 04 2018

Keywords

Comments

The coefficients in the expansion of 1/(1 - x - 3*x^4) are given by the sequence generated by the row sums in triangle A318772.
Coefficients in expansion of 1/(1 - x - 3*x^4) are given by the sum of numbers along "third Layer" skew diagonals pointing top-right in triangle A013610 ((1+3x)^n) and by the sum of numbers along "third Layer" skew diagonals pointing top-left in triangle A027465 ((3+x)^n), see links.

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

Crossrefs

Essentially a duplicate of A143454.

Programs

  • Magma
    [n le 4 select 1 else Self(n-1) +3*Self(n-4): n in [1..51]]; // G. C. Greubel, May 08 2021
    
  • Mathematica
    CoefficientList[Series[1/(1-x-3x^4), {x, 0, 50}], x]
    a[n_]:= a[n]= If[n<4, 1, a[n-1] + 3*a[n-4]]; Table[a[n], {n,0,50}]
    LinearRecurrence[{1,0,0,3}, {1,1,1,1}, 51]
  • PARI
    my(p=Mod('x,x^4-'x^3-3)); a(n) = vecsum(Vec(lift(p^n))); \\ Kevin Ryde, May 11 2021
  • Sage
    def a(n): return 1 if (n<4) else a(n-1) + 3*a(n-4)
    [a(n) for n in (0..50)] # G. C. Greubel, May 08 2021
    

Formula

a(n) = a(n-1) + 3*a(n-4) for n >= 0, a(n)=0 for n < 0, with a(0) = a(1) = a(2) = a(3) = 1.