A318810 Number of necklace permutations of a multiset whose multiplicities are the prime indices of n > 1.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 6, 1, 6, 1, 4, 3, 1, 1, 12, 4, 1, 16, 5, 1, 10, 1, 24, 3, 1, 5, 30, 1, 1, 4, 20, 1, 15, 1, 6, 30, 1, 1, 60, 10, 20, 4, 7, 1, 90, 7, 30, 5, 1, 1, 60, 1, 1, 54, 120, 10, 21, 1, 8, 5, 35, 1, 180, 1, 1, 70, 9, 14, 28, 1
Offset: 1
Keywords
Examples
The a(21) = 3 necklace permutations of {1,1,1,1,2,2} are: (111122), (111212), (112112). Only the first two are Lyndon words, the third being periodic.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; Table[Length[Select[Permutations[nrmptn[n]],neckQ]],{n,2,100}]
-
PARI
sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))} count(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, eulerphi(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n} a(n)={if(n==1, 1, count(sig(n)))} \\ Andrew Howroyd, Dec 08 2018
Formula
a(p) = 1 for prime p. - Andrew Howroyd, Dec 08 2018
Extensions
a(1) inserted by Andrew Howroyd, Dec 08 2018
Comments