cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318835 Restricted growth sequence transform of A318834, product_{d|n, dA019565(A000010(d)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 5, 6, 2, 7, 2, 8, 9, 8, 2, 10, 2, 11, 12, 13, 2, 14, 15, 16, 12, 14, 2, 17, 2, 18, 19, 20, 21, 22, 2, 23, 24, 25, 2, 26, 2, 27, 28, 29, 2, 30, 9, 31, 32, 33, 2, 34, 24, 35, 36, 37, 2, 38, 2, 39, 40, 39, 41, 42, 2, 43, 44, 45, 2, 46, 2, 47, 48, 49, 50, 51, 2, 52, 53, 54, 2, 55, 56, 57, 58, 59, 2, 60, 61, 62, 63, 64, 65, 66, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A051953(i) = A051953(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A318834(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(eulerphi(d)))); m; };
    v318835 = rgs_transform(vector(up_to,n,A318834(n)));
    A318835(n) = v318835[n];

A318832 Restricted growth sequence transform of A278222(A000203(n)).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 5, 6, 2, 3, 3, 2, 2, 7, 6, 8, 6, 9, 1, 6, 2, 4, 7, 9, 6, 3, 4, 6, 1, 10, 2, 11, 2, 12, 5, 4, 3, 13, 9, 2, 5, 9, 8, 6, 2, 7, 8, 14, 6, 5, 11, 4, 6, 4, 6, 13, 4, 9, 7, 2, 5, 15, 9, 6, 6, 10, 2, 6, 6, 11, 9, 8, 7, 5, 2, 9, 6, 14, 16, 10, 9, 3, 11, 6, 4, 13, 13, 14, 3, 9, 1, 6, 4, 10, 5, 17, 8, 12, 11, 11, 5, 13, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2018

Keywords

Comments

Sequence allots a distinct value for each distinct multiset formed from the lengths of 1-runs in the binary representation of A000203(n).
For all i, j: a(i) = a(j) => A175548(i) = A175548(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v318832 = rgs_transform(vector(up_to,n,A278222(sigma(n))));
    A318832(n) = v318832[n];
Showing 1-2 of 2 results.