A318843 a(n) is the smallest number k such that the symmetric representation of sigma(k) consists of n parts of width 1.
1, 3, 9, 21, 81, 147, 729, 903, 3025, 6875, 59049, 29095, 531441, 171875, 366025, 643885, 43046721, 3511475
Offset: 1
Examples
The smallest number k whose symmetric representation of sigma(k) consists of four parts of width one is a(4) = 21. The parts are 11, 5, 5, 11. a(4) = 3*7 has width pattern, A341969, 1010101 while A038547(4) = 3*5 has width pattern 1012101. a(6) = 3 * 7^2 = 147 has width pattern 10101010101 while A038547(6) = 3^2 * 5 = 45 has width pattern 10121212101. - _Hartmut F. W. Hoft_, Dec 11 2023
Crossrefs
Programs
-
Mathematica
(* Function path[] is defined in A237270 *) segmentsSR[pathN0_, pathN1_] := SplitBy[Map[Min, Drop[Drop[pathN0, 1], -1] - pathN1], #==0&] regions[pathN0_ ,pathN1_] := Select[Map[Apply[Plus, #]&, segmentsSR[pathN0, pathN1]], #!=0&] width1Q[pathN0_, pathN1_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[pathN0, 1], -1] - pathN1, 1]]] (* parameter seq is the list of elements of the sequence in interval 1..m-1 already computed with an entry of 0 representing an element not yet found *) a318843[m_, n_, seq_] := Module[{list=Join[seq, Table[0, 10]], path1=path[m-1], path0, k, a, r, w}, For[k=m, k<=n, k++, path0=path[k]; a=regions[path0, path1]; r=Length[a]; w=width1Q[path0, path1]; If[w && list[[r]]==0, list[[r]]=k]; path1=path0]; list] a318843[2,60000,{1}] (* data - actually computed in steps *)
Extensions
a(13)-a(18) from Hartmut F. W. Hoft, Oct 04 2021
Comments