cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318844 Expansion of Product_{k>=1} (1 + x^k)^(d(k)-1), where d(k) = number of divisors of k (A000005).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 8, 10, 15, 17, 29, 31, 48, 60, 81, 99, 143, 167, 231, 287, 374, 460, 615, 740, 964, 1194, 1512, 1856, 2379, 2877, 3635, 4460, 5540, 6759, 8433, 10192, 12608, 15335, 18774, 22726, 27868, 33525, 40863, 49292, 59652, 71694, 86780, 103818, 125118, 149778, 179608
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 04 2018

Keywords

Comments

Convolution of A081362 and A107742.
Weigh transform of A032741.

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul((1+x^k)^(tau(k)-1),k=1..100),x=0,53): seq(coeff(a,x,n),n=0..52); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 52; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[0, k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 52; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - 1) x^k/(k (1 - x^(2 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[0, d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A032741(k).
G.f.: exp(Sum_{k>=1} (sigma_1(k) - 1)*x^k/(k*(1 - x^(2*k)))), where sigma_1(k) = sum of divisors of k (A000203).