cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318845 a(n) = Sum_{d|n} (-1)^(n/d+1) * Sum_{j|d} sigma(j), where sigma(j) = sum of divisors of j (A000203).

Original entry on oeis.org

1, 3, 6, 6, 8, 18, 10, 10, 24, 24, 14, 36, 16, 30, 48, 15, 20, 72, 22, 48, 60, 42, 26, 60, 46, 48, 82, 60, 32, 144, 34, 21, 84, 60, 80, 144, 40, 66, 96, 80, 44, 180, 46, 84, 192, 78, 50, 90, 76, 138, 120, 96, 56, 246, 112, 100, 132, 96, 62, 288, 64, 102, 240, 28, 128, 252, 70, 120, 156, 240
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1) Sum[DivisorSigma[1, j], {j, Divisors[d]}], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, DivisorSigma[1, #] &] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(DivisorSum[k, DivisorSigma[1, #] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3); f[2, e_] := (e+1)*(e+2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2025 *)
  • PARI
    a(n) = {my(f = factor(n), p , e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(p == 2, (e+1)*(e+2)/2, (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3)));} \\ Amiram Eldar, May 26 2025

Formula

G.f.: Sum_{k>=1} A007429(k)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^(A007429(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
From Amiram Eldar, May 26 2025: (Start)
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3) for an odd prime p.
Dirichlet g.f: zeta(s-1) * zeta(s)^2 * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^6/864 = 1.112718... . (End)