A318846 Number of balanced reduced multisystems whose atoms cover an initial interval of positive integers with multiplicities equal to the prime indices of n.
1, 1, 1, 1, 2, 3, 6, 4, 15, 11, 20, 21, 90, 51, 80, 32, 468, 166, 2910, 124, 521, 277, 20644, 266, 621, 1761, 1866, 841, 165874, 1374, 1484344, 436, 3797, 12741, 5383, 3108, 14653890, 103783, 31323, 2294, 158136988, 12419, 1852077284, 6382, 20786, 939131, 23394406084
Offset: 1
Keywords
Examples
The a(12) = 21 multisystems on {1,1,2,3} (commas elided): {1123} {{1}{123}} {{1}{1}{23}} {{{1}}{{1}{23}}} {{2}{113}} {{1}{2}{13}} {{{23}}{{1}{1}}} {{3}{112}} {{1}{3}{12}} {{{1}}{{2}{13}}} {{11}{23}} {{2}{3}{11}} {{{2}}{{1}{13}}} {{12}{13}} {{{13}}{{1}{2}}} {{{1}}{{3}{12}}} {{{3}}{{1}{12}}} {{{12}}{{1}{3}}} {{{2}}{{3}{11}}} {{{3}}{{2}{11}}} {{{11}}{{2}{3}}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; tmsp[m_]:=Prepend[Join@@Table[tmsp[c],{c,Select[mps[m],1
Extensions
Terminology corrected by Gus Wiseman, Jan 04 2020
More terms from Jinyuan Wang, Jun 26 2020
Comments