cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318859 Number of rooted trees with n nodes such that two equals the maximal number of isomorphic subtrees extending from the same node.

Original entry on oeis.org

0, 1, 1, 4, 9, 22, 54, 138, 346, 889, 2285, 5928, 15436, 40424, 106230, 280305, 741912, 1969816, 5243942, 13995807, 37439883, 100371907, 269623436, 725638613, 1956352468, 5283171593, 14289645110, 38707131195, 104995130162, 285184002486, 775586517781
Offset: 2

Views

Author

Alois P. Heinz, Sep 04 2018

Keywords

Crossrefs

Column k=2 of A318758.

Programs

  • Maple
    h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m))))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)):
    a:= n-> (k-> A(n, k)-A(n, k-1))(2):
    seq(a(n), n=2..32);
  • Mathematica
    h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t],
       If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
       Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]];
    A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]];
    a[n_] := A[n, 2] - A[n, 1];
    Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Dec 01 2023, after Alois P. Heinz *)