A318859 Number of rooted trees with n nodes such that two equals the maximal number of isomorphic subtrees extending from the same node.
0, 1, 1, 4, 9, 22, 54, 138, 346, 889, 2285, 5928, 15436, 40424, 106230, 280305, 741912, 1969816, 5243942, 13995807, 37439883, 100371907, 269623436, 725638613, 1956352468, 5283171593, 14289645110, 38707131195, 104995130162, 285184002486, 775586517781
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..2213
Crossrefs
Column k=2 of A318758.
Programs
-
Maple
h:= proc(n, m, t, k) option remember; `if`(m=0, binomial(n+t, t), `if`(n=0, 0, add(h(n-1, m-j, t+1, k), j=1..min(k, m)))) end: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, k)*h(A(i, k), j, 0, k), j=0..n/i))) end: A:= (n, k)-> `if`(n<2, n, b(n-1$2, k)): a:= n-> (k-> A(n, k)-A(n, k-1))(2): seq(a(n), n=2..32);
-
Mathematica
h[n_, m_, t_, k_] := h[n, m, t, k] = If[m == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, m - j, t + 1, k], {j, 1, Min[k, m]}]]]; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*h[A[i, k], j, 0, k], {j, 0, n/i}]]]; A[n_, k_] := If[n < 2, n, b[n - 1, n - 1, k]]; a[n_] := A[n, 2] - A[n, 1]; Table[a[n], {n, 2, 32}] (* Jean-François Alcover, Dec 01 2023, after Alois P. Heinz *)