A318874 Number of divisors d of n for which 2*phi(d) > d.
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 7
Offset: 1
Keywords
Examples
n = 105 has eight divisors: [1, 3, 5, 7, 15, 21, 35, 105]. When A083254 is applied to them, we obtain [1, 1, 3, 5, 1, 3, 13, -9], and seven of these numbers are positive, thus a(105) = 7.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Maple
A318874 := n -> nops(select(d -> (2*numtheory:-phi(d)) > d, divisors(n))): seq(A318874(n), n=1..99); # Peter Luschny, Sep 05 2018
-
Mathematica
A318874[n_] := DivisorSum[n, 1 &, 2*EulerPhi[#] > # &]; Array[A318874, 100] (* Paolo Xausa, Jul 08 2024 *)
-
PARI
A318874(n) = sumdiv(n,d,(2*eulerphi(d))>d);