cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318875 Number of divisors d of n for which 2*phi(d) < d.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 3, 0, 0, 0, 1, 0, 4, 0, 1, 0, 3, 0, 3, 0, 2, 0, 1, 0, 4, 0, 2, 0, 2, 0, 3, 0, 3, 0, 1, 0, 6, 0, 1, 0, 0, 0, 3, 0, 2, 0, 3, 0, 6, 0, 1, 0, 2, 0, 3, 0, 4, 0, 1, 0, 6, 0, 1, 0, 3, 0, 5, 0, 2, 0, 1, 0, 5, 0, 2, 0, 4, 0, 3, 0, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 05 2018

Keywords

Crossrefs

Programs

  • Maple
    A318875 := n -> nops(select(d -> (2*numtheory:-phi(d)) < d, divisors(n))):
    seq(A318875(n), n=1..199); # Peter Luschny, Sep 05 2018
  • Mathematica
    A318875[n_] := DivisorSum[n, 1 &, 2*EulerPhi[#] < # &];
    Array[A318875, 100] (* Paolo Xausa, Jul 08 2024 *)
  • PARI
    A318875(n) = sumdiv(n,d,(2*eulerphi(d))
    				

Formula

a(n) = Sum_{d|n} [A083254(d) < 0].
For all n >= 1, a(n) + A318874(n) + A007814(n) = A000005(n).