cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318891 Filter sequence combining the prime signature of n (A046523) with the largest prime factor of n (A006530).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 10, 15, 16, 12, 17, 18, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 19, 30, 14, 31, 32, 33, 23, 34, 35, 36, 37, 38, 18, 39, 40, 41, 42, 18, 30, 43, 44, 21, 19, 45, 33, 46, 47, 48, 49, 50, 25, 51, 23, 52, 53, 54, 39, 36, 55, 56, 57, 58, 18, 59, 19, 60, 61, 62, 63, 64, 65, 66, 30, 67, 46, 68, 69, 48, 23, 70, 50
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2018

Keywords

Comments

Restricted growth sequence transform of A286356.
For all i, j: a(i) = a(j) => A297112(i) = A297112(j). (Also, equivalently, A297113 or A297167 in place of A297112.)

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A318891aux(n) = [A046523(n), A061395(n)];
    v318891 = rgs_transform(vector(up_to,n,A318891aux(n)));
    A318891(n) = v318891[n];

A336148 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278221(i) = A278221(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 5, 10, 11, 12, 2, 13, 14, 15, 8, 16, 17, 18, 5, 19, 20, 21, 11, 22, 23, 24, 2, 25, 26, 27, 14, 28, 29, 30, 8, 31, 32, 33, 17, 34, 35, 36, 5, 37, 38, 39, 20, 40, 41, 25, 11, 42, 43, 44, 23, 45, 46, 47, 2, 48, 49, 50, 26, 51, 32, 52, 14, 53, 54, 34, 29, 55, 56, 57, 8, 58, 59, 60, 32, 61, 62, 63, 17, 64, 65, 30, 35, 66, 67, 68, 5, 69, 70, 71, 38, 72, 73, 74, 20, 75
Offset: 1

Views

Author

Antti Karttunen, Jul 12 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278221(n), A336158(n)], i.e., of the ordered pair [A046523(A122111(n)), A046523(A000265(n))].
For all i, j: A324400(i) = A324400(j) => A336146(i) = A336146(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A278221(n) = A046523(A122111(n));
    A000265(n) = (n>>valuation(n,2));
    A336158(n) = A046523(A000265(n));
    Aux336148(n) = [A278221(n),A336158(n)];
    v336148 = rgs_transform(vector(up_to, n, Aux336148(n)));
    A336148(n) = v336148[n];

A322814 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(2) = -1, f(n) = 0 if n is an odd prime, and f(n) = A278221(n) for all other numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 4, 6, 7, 3, 5, 3, 8, 7, 4, 3, 5, 3, 7, 9, 10, 3, 5, 11, 12, 6, 8, 3, 13, 3, 4, 14, 15, 8, 5, 3, 16, 17, 7, 3, 18, 3, 10, 7, 19, 3, 5, 20, 7, 21, 12, 3, 5, 14, 8, 22, 23, 3, 13, 3, 24, 9, 4, 25, 26, 3, 15, 27, 18, 3, 5, 3, 28, 7, 16, 10, 29, 3, 7, 6, 30, 3, 18, 31, 32, 33, 10, 3, 13, 17, 19, 34, 35, 36, 5, 3, 8, 14, 7, 3, 37, 3, 12, 18
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A001221(i) = A001221(j).

Crossrefs

Programs

  • PARI
    up_to = 4096;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A322814aux(n) = if(2==n,-1,if(isprime(n),0,A046523(A122111(n))));
    v322814 = rgs_transform(vector(up_to,n,A322814aux(n)));
    A322814(n) = v322814[n];
Showing 1-3 of 3 results.