A318903 Number of n-node rooted trees in which seven equals the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root.
1, 1, 3, 8, 22, 60, 167, 464, 1302, 3666, 10370, 29421, 83736, 238891, 683088, 1956968, 5616281, 16142818, 46463814, 133903792, 386336345, 1115804329, 3225691950, 9333321576, 27027053245, 78322024353, 227126864470, 659069928758, 1913612752613, 5559288014180
Offset: 7
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..2137
Crossrefs
Column k=7 of A255704.
Programs
-
Maple
g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)- `if`(d=k, 1, 0)), d=numtheory[divisors](j))*g(n-j, k), j=1..n)/n) end: a:= n-> (k-> g(n-1, k) -g(n-1, k-1))(7): seq(a(n), n=7..37);