A318944 Number of Dyck paths with n nodes and altitude 4.
0, 0, 0, 0, 1, 8, 32, 114, 376, 1177, 3549, 10406, 29861, 84249, 234502, 645625, 1761765, 4772534, 12851261, 34434561, 91890118, 244385617, 648139821, 1714976054, 4529163125, 11942440233, 31448759302, 82727323369, 217426319541, 571033273142
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- E. Czabarka et al, Enumerations of peaks and valleys on non-decreasing Dyck paths, Disc. Math. 341 (2018) 2789-2807.
- Index entries for linear recurrences with constant coefficients, signature (9,-31,50,-36,8).
Crossrefs
A column of A318942.
Programs
-
Maple
(1-x)^2*x^4*(1+x-8*x^2+7*x^3)/(1-2*x)^3/(1-3*x+x^2) ; taylor(%,x=0,30) ; gfun[seriestolist](%) ; # R. J. Mathar, Nov 25 2018
-
Mathematica
LinearRecurrence[{9,-31,50,-36,8},{0,0,0,0,1,8,32,114,376,1177},30] (* Harvey P. Dale, Nov 03 2019 *)
-
PARI
concat([0,0,0,0], Vec(x^4*(1 - x)^2*(1 + x - 8*x^2 + 7*x^3) / ((1 - 2*x)^3*(1 - 3*x + x^2)) + O(x^40))) \\ Colin Barker, Apr 11 2019
Formula
a(n) = 9*a(n-1) - 31*a(n-2) + 50*a(n-3) - 36*a(n-4) + 8*a(n-5) for n>9. - Colin Barker, Apr 11 2019