A318948 Number of ways to choose an integer partition of each factor in a factorization of n.
1, 2, 3, 9, 7, 17, 15, 40, 39, 56, 56, 126, 101, 165, 197, 336, 297, 496, 490, 774, 837, 1114, 1255, 1948, 2007, 2638, 3127, 4123, 4565, 6201, 6842, 9131, 10311, 12904, 14988, 19516, 21637, 26995, 31488, 39250, 44583, 55418, 63261, 77683, 89935, 108068, 124754
Offset: 1
Keywords
Examples
The a(4) = 9 ways: (1+1)*(1+1), (1+1+1+1), (1+1)*(2), (2)*(1+1), (2+1+1), (2)*(2), (2+2), (3+1), (4).
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]]; Table[Sum[Times@@PartitionsP/@fac,{fac,facs[n]}],{n,10}]
Formula
Dirichlet g.f.: Product_{n > 1} 1 / (1 - P(n) / n^s) where P = A000041. [clarified by Ilya Gutkovskiy, Oct 26 2019]