cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A318696 Expansion of e.g.f. Product_{i>=1, j>=1} (1 + x^(i*j))^(1/(i*j)).

Original entry on oeis.org

1, 1, 2, 10, 34, 218, 1708, 12556, 97340, 1139932, 12602584, 142757624, 1983086488, 26745019000, 402951386576, 7181178238672, 115410887636752, 2039658743085584, 42354537803172640, 815690033731561888, 17593347085888752416, 416765224159172991136, 9379433694333768563392
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul((1+x^k)^(tau(k)/k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Product[(1 + x^(i j))^(1/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[0, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]
    nmax = 22; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k]/k, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 01 2018 *)

Formula

E.g.f.: Product_{k>=1} (1 + x^k)^(tau(k)/k), where tau = number of divisors (A000005).
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*tau(d) ) * x^k/k).

A318695 Expansion of e.g.f. Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(1/(i*j)).

Original entry on oeis.org

1, 1, 4, 16, 106, 658, 6088, 51952, 592828, 6577948, 88213744, 1173121024, 18663391096, 289030343704, 5157010548064, 92428084599232, 1848308567352592, 37038307949425168, 822602470902709312, 18285742807660340992, 444405771941314880416, 10883864256927386369056, 286778106663948874858624
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(n!*coeff(series(mul(1/(1-x^k)^(tau(k)/k),k=1..100),x=0,23),x,n),n=0..22); # Paolo P. Lava, Jan 09 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[Product[1/(1 - x^(i j))^(1/(i j)), {i, 1, nmax}], {j, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[0, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[DivisorSigma[0, d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]

Formula

E.g.f.: Product_{k>=1} 1/(1 - x^k)^(tau(k)/k), where tau = number of divisors (A000005).
E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} tau(d) ) * x^k/k).

A318975 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^phi(k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 4, 10, 20, 42, 80, 154, 288, 522, 940, 1658, 2892, 4970, 8456, 14218, 23696, 39122, 64044, 104042, 167732, 268602, 427248, 675482, 1061632, 1659298, 2579676, 3990418, 6142892, 9412906, 14360136, 21814698, 33004704, 49739426, 74677924, 111713658
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A299069 and A061255.

Examples

			a(n) ~ exp(3^(4/3) * (7*Zeta(3))^(1/3) * n^(2/3) / (2*Pi^(2/3)) - 1/6) * A^2 * (7*Zeta(3))^(1/9) / (sqrt(2) * 3^(7/18) * Pi^(8/9) * n^(11/18)), where A is the Glaisher-Kinkelin constant A074962.
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]

A318976 Expansion of e.g.f. Product_{k>=1} ((1 + x^k)/(1 - x^k))^(phi(k)/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 2, 6, 32, 196, 1512, 13384, 135872, 1545744, 19441952, 268386784, 4018603008, 65021744704, 1127284876928, 20880206388864, 410781080941568, 8561002328678656, 188224613741879808, 4355496092560324096, 105752112730661347328, 2688539359466319184896
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 06 2018

Keywords

Comments

Convolution of A088009 and A000262.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(EulerPhi[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
    nmax = 20; CoefficientList[Series[E^(x*(2 + x)/(1 - x^2)), {x, 0, nmax}], x] * Range[0, nmax]!

Formula

E.g.f.: exp(x*(2 + x)/(1 - x^2)).
a(n) ~ 2^(-3/4) * 3^(1/4) * exp(sqrt(6*n) - n - 1/2) * n^(n - 1/4).
Showing 1-4 of 4 results.