A318980 Number of integer partitions of n whose parts plus 1 are relatively prime.
0, 0, 1, 1, 4, 5, 9, 13, 21, 29, 43, 56, 79, 109, 146, 192, 254, 329, 428, 553, 707, 900, 1139, 1434, 1800, 2251, 2799, 3472, 4286, 5275, 6469, 7918, 9655, 11755, 14252, 17248, 20817, 25084, 30134, 36142, 43235, 51644, 61548, 73241, 86961, 103108, 122010
Offset: 1
Keywords
Examples
The a(7) = 9 partitions are (61), (43), (421), (4111), (322), (3211), (2221), (22111), (211111). The a(8) = 13 partitions: (62), (332), (422), (431), (521), (611), (3221), (4211), (22211), (32111), (41111), (221111), (2111111).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],GCD@@(#+1)==1&]],{n,30}]
-
PARI
seq(n)={Vec(sum(d=1, n+1, moebius(d)*(-1 + 1/prod(k=ceil(2/d), (n+1)\d, 1 - x^(k*d-1) + O(x*x^n)))), -n)} \\ Andrew Howroyd, Oct 17 2019
Formula
G.f.: Sum_{d>=1} mu(d)*(-1 + 1/(Prod_{k>=2/d} 1 - x^(k*d - 1))). - Andrew Howroyd, Oct 17 2019