cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318982 a(n) = Sum_{d|n} Kronecker(-67, d).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0
Offset: 1

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s) + Kronecker(m,p)*p^(-2s))^(-1) for m = -67.
Half of the number of integer solutions to x^2 + x*y + 17*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-67)] counted up to association.
Inverse Moebius transform of A011596.

Examples

			G.f. = x + x^4 + x^9 + x^16 + 2*x^17 + 2*x^19 + 2*x^23 + x^25 + 2*x^29 + x^36 + 2*x^37 + 2*x^47 + x^49 + 2*x^59 + x^64 + x^67 + 2*x^68 + 2*x^71 + 2*x^73 + 2*x^76 + ...
		

Crossrefs

Cf. A318984.
Moebius transform gives A011596.
Number of integral elements with norm n in Q[sqrt(d)] counted up to association: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A035171 (d=-19), A035147 (d=-43), this sequence (d=-67), A318983 (d=-163).

Programs

  • Mathematica
    a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-67, #] &]];
    Table[a[n], {n, 1, 110}] (* Vincenzo Librandi, Sep 10 2018 *)
  • PARI
    a(n) = sumdiv(n, d, kronecker(-67, d))

Formula

a(n) is multiplicative with a(67^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-67, p) = -1, a(p^e) = e + 1 if Kronecker(-67, p) = 1.
G.f.: Sum_{k>0} Kronecker(-67, k) * x^k / (1 - x^k).
A318984(n) = 2 * a(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(67) = 0.383806... . - Amiram Eldar, Dec 16 2023