cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318984 Theta series of quadratic form x^2 + x*y + 17*y^2.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 4, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0
Offset: 0

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Number of integer solutions (x, y) to x^2 + x*y + 17*y^2 = n. Also, a(n) is the number of integral elements with norm n in Q[sqrt(-67)].

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 4*x^17 + 4*x^19 + 4*x^23 + 2*x^25 + 4*x^29 + 2*x^36 + 4*x^37 + 4*x^47 + 2*x^49 + 4*x^59 + 2*x^64 + 2*x^67 + 4*x^68 + 4*x^71 + 4*x^73 + 4*x^76 + ...
		

Crossrefs

Cf. A318982.
Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43), this sequence (d=-67), A318985 (d=-163).

Programs

  • Mathematica
    Join[{1}, a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-67, #] &]];
    2 Table[a[n], {n, 1, 110}]] (* Vincenzo Librandi, Sep 10 2018 *)
  • PARI
    a(n) = if(n, 2*sumdiv(n, d, kronecker(-67, d)), 1)

Formula

G.f.: 1 + 2 * Sum_{k>0} Kronecker(-67, k) * x^k / (1 - x^k).
a(n) = 2 * A318982(n) unless n = 0.
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(67^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if Kronecker(-67, p) = -1, b(p^e) = e + 1 if Kronecker(-67, p) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2*Pi/sqrt(67) = 0.767613... . - Amiram Eldar, Dec 16 2023