A318993 Matula-Goebel number of the planted achiral tree determined by the n-th number whose consecutive prime indices are divisible.
1, 2, 4, 3, 8, 7, 16, 5, 9, 19, 32, 17, 64, 53, 11, 128, 23, 256, 67, 49, 131, 512, 59, 27, 311, 25, 241, 1024, 2048, 31, 719, 83, 4096, 1619, 361, 331, 8192, 227, 16384, 739, 3671, 32768, 277, 81, 103, 2063, 65536, 97, 1523, 2809, 8161, 131072, 262144, 17863
Offset: 1
Keywords
Examples
The sequence of all planted achiral trees begins: o, (o), (oo), ((o)), (ooo), ((oo)), (oooo), (((o))), ((o)(o)), ((ooo)), (ooooo), (((oo))), (oooooo), ((oooo)), ((((o)))), (ooooooo), (((o)(o))), (oooooooo), (((ooo))), ((oo)(oo)).
Links
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ptnToAch[y_]:=Fold[Table[#1,{#2}]&,{},Divide@@@Partition[Append[y,1],2,1]]; MGNumber[[]]:=1;MGNumber[x:[__]]:=If[Length[x]==1,Prime[MGNumber[x[[1]]]],Times@@Prime/@MGNumber/@x]; MGNumber/@ptnToAch/@Reverse/@primeMS/@Select[Range[100],Or[#==1,PrimeQ[#],Divisible@@Reverse[primeMS[#]]]&]