cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318991 Numbers whose consecutive prime indices are divisible. Heinz numbers of integer partitions in which each part is divisible by the next.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 71, 72, 73, 74, 76, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of all dividing partitions (columns) begins:
   1  2  1  3  2  4  1  2  3  5  2  6  4  1  7  2  8  3  4  5  9  2  3  6  2  4
         1     1     1  2  1     1     1  1     2     1  2  1     1  3  1  2  1
                     1           1        1     1     1           1        2  1
                                          1                       1
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#==1,PrimePowerQ[#],Divisible@@Reverse[PrimePi/@FactorInteger[#][[All,1]]]]&]
  • PARI
    ok(n)={my(v=apply(primepi, factor(n)[,1])); for(i=2, #v, if(v[i]%v[i-1], return(0))); 1} \\ Andrew Howroyd, Oct 26 2018

A318992 Numbers whose consecutive prime indices are not all divisible.

Original entry on oeis.org

15, 30, 33, 35, 45, 51, 55, 60, 66, 69, 70, 75, 77, 85, 90, 91, 93, 95, 99, 102, 105, 110, 119, 120, 123, 132, 135, 138, 140, 141, 143, 145, 150, 153, 154, 155, 161, 165, 170, 175, 177, 180, 182, 186, 187, 190, 195, 198, 201, 203, 204, 205, 207, 209, 210, 215
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2018

Keywords

Examples

			The sequence of partitions whose Heinz numbers belong to the sequence begins: (3,2), (3,2,1), (5,2), (4,3), (3,2,2), (7,2), (5,3), (3,2,1,1), (5,2,1), (9,2), (4,3,1), (3,3,2), (5,4), (7,3), (3,2,2,1), (6,4), (11,2), (8,3), (5,2,2).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],!Or[#==1,PrimePowerQ[#],Divisible@@Reverse[PrimePi/@FactorInteger[#][[All,1]]]]&]
  • PARI
    ok(n)={my(v=apply(primepi, factor(n)[,1])); for(i=2, #v, if(v[i]%v[i-1], return(1))); 0} \\ Andrew Howroyd, Oct 26 2018

A318990 Numbers of the form prime(x) * prime(y) where x divides y.

Original entry on oeis.org

4, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 46, 49, 57, 58, 62, 65, 74, 82, 86, 87, 94, 106, 111, 115, 118, 121, 122, 129, 133, 134, 142, 146, 158, 159, 166, 169, 178, 183, 185, 194, 202, 206, 213, 214, 218, 226, 235, 237, 254, 259, 262, 267, 274, 278, 289
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2018

Keywords

Examples

			The sequence of all dividing pairs (columns) begins:
  1  1  2  1  1  2  1  3  1  1  1  2  1  4  2  1  1  3  1  1  1  2  1  1
  1  2  2  3  4  4  5  3  6  7  8  6  9  4  8 10 11  6 12 13 14 10 15 16
		

Crossrefs

A subset of A001358 (semiprimes), squarefree A006881.
The squarefree version is A339005.
The quotient is A358103 = A358104 / A358105.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A358192/A358193 gives quotients of semiprime indices.

Programs

  • Mathematica
    Select[Range[100],And[PrimeOmega[#]==2,Or[PrimePowerQ[#],Divisible@@Reverse[PrimePi/@FactorInteger[#][[All,1]]]]]&]
  • PARI
    ok(n)={my(f=factor(n)); bigomega(f)==2 && (#f~==1 || primepi(f[2,1]) % primepi(f[1,1]) == 0)} \\ Andrew Howroyd, Oct 26 2018
Showing 1-3 of 3 results.