A319000 Regular triangle where T(n,k) is the number of finite multisets of positive integers with product n and sum k.
1, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 2, 3, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 3, 3, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1 0 1 0 0 1 0 0 0 2 0 0 0 0 1 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 2 2 3 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 3 3 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 3 3 4 4 4 4 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 2 3 3 3 3 3 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 3 3 3 3 4 Row 12 {0,0,0,0,0,0,2,3,3,3,3,4} corresponds to the partitions (C = 12): . . . . . . (43) (62) (621) (6211) (62111) (C) (322) (431) (4311) (43111) (431111) (621111) (3221) (32211) (322111) (3221111) (4311111) (32211111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[k],Times@@#==n&]],{n,20},{k,n}]