A319001 Number of ordered multiset partitions of integer partitions of n where the sequence of GCDs of the partitions is weakly increasing.
1, 1, 3, 7, 18, 42, 105, 248, 606, 1450, 3507, 8415, 20305, 48785, 117502, 282574, 680137, 1636005, 3936841, 9470776, 22787529, 54822530, 131901491, 317336519, 763489051, 1836862947, 4419324581, 10632404189, 25580507505, 61543948594, 148068421107
Offset: 0
Keywords
Examples
The a(4) = 18 ordered multiset partitions: {{4}} {{1,3}} {{2,2}} {{1,1,2}} {{1,1,1,1}} {{1},{3}} {{2},{2}} {{1},{1,2}} {{1},{1,1,1}} {{1,2},{1}} {{1,1,1},{1}} {{1,1},{2}} {{1,1},{1,1}} {{1},{1},{2}} {{1},{1},{1,1}} {{1},{1,1},{1}} {{1,1},{1},{1}} {{1},{1},{1},{1}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
PARI
\\ here B(n) is A000837 as vector. B(n) = {dirmul(vector(n, k, moebius(k)), vector(n, k, numbpart(k)))} seq(n) ={my(p=x*Ser(B(n))); Vec(1/prod(g=1, n, 1 - subst(p + O(x*x^(n\g)), x, x^g)))} \\ Andrew Howroyd, Jan 16 2023
Extensions
a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 16 2023
Comments