A319003 Number of ordered multiset partitions of integer partitions of n where the sequence of LCMs of the blocks is weakly increasing.
1, 1, 3, 7, 17, 38, 87, 191, 420, 908, 1954, 4160, 8816, 18549, 38851, 80965, 168077, 347566, 716443, 1472344, 3017866, 6170789, 12590805, 25640050, 52122784, 105791068, 214413852, 434007488, 877480395, 1772235212, 3575967030, 7209301989, 14523006820
Offset: 0
Keywords
Examples
The a(4) = 17 ordered multiset partitions: {{4}} {{1,3}} {{2,2}} {{1,1,2}} {{1,1,1,1}} {{1},{3}} {{2},{2}} {{1},{1,2}} {{1},{1,1,1}} {{1,1},{2}} {{1,1,1},{1}} {{1},{1},{2}} {{1,1},{1,1}} {{1},{1},{1,1}} {{1},{1,1},{1}} {{1,1},{1},{1}} {{1},{1},{1},{1}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
seq(n)={my(M=Map()); for(m=1, n, forpart(p=m, my(k=lcm(Vec(p)), z); mapput(M, k, if(mapisdefined(M,k,&z), z, 1 + O(x*x^n)) - x^m))); Vec(1/vecprod(Mat(M)[,2]))} \\ Andrew Howroyd, Jan 16 2023
Extensions
a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Jan 16 2023
Comments