A319004 Number of ordered factorizations of n where the sequence of LCMs of the prime indices (A290103) of each factor is weakly increasing.
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 2, 8, 1, 5, 1, 4, 2, 2, 1, 8, 2, 2, 4, 4, 1, 5, 1, 16, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 16, 2, 5, 2, 4, 1, 12, 2, 8, 2, 2, 1, 11, 1, 2, 4, 32, 2, 5, 1, 4, 2, 5, 1, 23, 1, 2, 4, 4, 2, 5, 1, 16, 8, 2, 1, 11, 2, 2, 2, 8, 1, 12, 2, 4, 2, 2, 2, 32, 1, 5, 4, 11, 1, 5, 1, 8, 5
Offset: 1
Keywords
Examples
The a(60) = 11 ordered factorizations: (2*2*3*5), (2*2*15), (2*3*10), (2*6*5), (4*3*5), (2*30), (3*20), (4*15), (12*5), (6*10), (60). The a(60) = 11 ordered multiset partitions: {{1,1,2,3}} {{1},{1,2,3}} {{2},{1,1,3}} {{1,1,2},{3}} {{1,1},{2,3}} {{1,2},{1,3}} {{1},{1},{2,3}} {{1},{2},{1,3}} {{1},{1,2},{3}} {{1,1},{2},{3}} {{1},{1},{2},{3}}
Links
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]]; lix[n_]:=LCM@@PrimePi/@If[n==1,{},FactorInteger[n]][[All,1]]; Table[Length[Select[Join@@Permutations/@facs[n],OrderedQ[lix/@#]&]],{n,100}]
-
PARI
is_weakly_increasing(v) = { for(i=2,#v,if(v[i]
A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1])); A319004aux(n, facs) = if(1==n, is_weakly_increasing(apply(f -> A290103(f),Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1), newfacs = List(facs); listput(newfacs,d); s += A319004aux(n/d, newfacs))); (s)); A319004(n) = if((1==n)||isprime(n),1,A319004aux(n, List([]))); \\ Antti Karttunen, Sep 23 2018
Formula
Extensions
More terms from Antti Karttunen, Sep 23 2018
Comments