cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319005 Number of integer partitions of n whose product of parts is >= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 7, 13, 18, 28, 40, 60, 80, 113, 152, 205, 266, 353, 454, 590, 751, 959, 1210, 1529, 1905, 2381, 2953, 3658, 4501, 5539, 6772, 8278, 10065, 12230, 14801, 17893, 21544, 25921, 31089, 37240, 44478, 53068, 63150, 75063, 89018, 105438, 124632
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Examples

			The a(1) = 1 through a(9) = 18 partitions:
  (1)  (2)  (3)  (4)   (5)   (6)    (7)     (8)      (9)
                 (22)  (32)  (33)   (43)    (44)     (54)
                             (42)   (52)    (53)     (63)
                             (222)  (322)   (62)     (72)
                             (321)  (331)   (332)    (333)
                                    (421)   (422)    (432)
                                    (2221)  (431)    (441)
                                            (521)    (522)
                                            (2222)   (531)
                                            (3221)   (621)
                                            (3311)   (3222)
                                            (4211)   (3321)
                                            (22211)  (4221)
                                                     (4311)
                                                     (5211)
                                                     (22221)
                                                     (32211)
                                                     (33111)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1, `if`(p>1,
          0, 1), b(n, i-1, p) +b(n-i, min(i, n-i), max(p/i, 1)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 22 2018
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@#>=n&]],{n,50}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[p > 1, 0, 1],
         b[n, i - 1, p] + b[n - i, Min[i, n - i], Max[p/i, 1]]];
    a[n_] := b[n, n, n];
    a /@ Range[0, 50] (* Jean-François Alcover, May 11 2021, after Alois P. Heinz *)