A319005 Number of integer partitions of n whose product of parts is >= n.
1, 1, 1, 1, 2, 2, 5, 7, 13, 18, 28, 40, 60, 80, 113, 152, 205, 266, 353, 454, 590, 751, 959, 1210, 1529, 1905, 2381, 2953, 3658, 4501, 5539, 6772, 8278, 10065, 12230, 14801, 17893, 21544, 25921, 31089, 37240, 44478, 53068, 63150, 75063, 89018, 105438, 124632
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 18 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (22) (32) (33) (43) (44) (54) (42) (52) (53) (63) (222) (322) (62) (72) (321) (331) (332) (333) (421) (422) (432) (2221) (431) (441) (521) (522) (2222) (531) (3221) (621) (3311) (3222) (4211) (3321) (22211) (4221) (4311) (5211) (22221) (32211) (33111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Pankaj Jyoti Mahanta, On the number of partitions of n whose product of the summands is at most n, arXiv:2010.07353 [math.CO], 2020.
Crossrefs
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, `if`(p>1, 0, 1), b(n, i-1, p) +b(n-i, min(i, n-i), max(p/i, 1))) end: a:= n-> b(n$3): seq(a(n), n=0..50); # Alois P. Heinz, Oct 22 2018
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Times@@#>=n&]],{n,50}] (* Second program: *) b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[p > 1, 0, 1], b[n, i - 1, p] + b[n - i, Min[i, n - i], Max[p/i, 1]]]; a[n_] := b[n, n, n]; a /@ Range[0, 50] (* Jean-François Alcover, May 11 2021, after Alois P. Heinz *)