cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319013 a(n) is the sum over each permutation of S_n of the least element of the descent set.

Original entry on oeis.org

0, 1, 7, 37, 201, 1231, 8653, 69273, 623521, 6235291, 68588301, 823059733, 10699776673, 149796873591, 2246953104061, 35951249665201, 611171244308673, 11001082397556403, 209020565553571981, 4180411311071439981, 87788637532500240001, 1931350025715005280463
Offset: 1

Views

Author

Peter Kagey, Sep 07 2018

Keywords

Comments

a(1) = 0 since the descent set of the identity permutation is empty.
Lim_{n->infinity} a(n)/n! = e - 1.

Examples

			For n = 3, the least element of the descent set for each permutation in S_3 is given by the table:
+-------------+-------------+----------------------+
| permutation | descent set | least element (or 0) |
+-------------+-------------+----------------------+
| 123         | {}          | 0                    |
| 132         | {2}         | 2                    |
| 213         | {1}         | 1                    |
| 231         | {2}         | 2                    |
| 312         | {1}         | 1                    |
| 321         | {1,2}       | 1                    |
+-------------+-------------+----------------------+
Thus a(3) = 0 + 2 + 1 + 2 + 1 + 1 = 7.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2011; see Section 1.4, pp. 38.

Crossrefs

Cf. A002627.

Programs

  • Mathematica
    Table[Sum[k^2*Binomial[n, k + 1]*(n - k - 1)!, {k, 1, n - 1}], {n, 1, 15}]
  • PARI
    a(n) = sum(k=1, n-1, k^2*binomial(n, k+1)*(n-k-1)!); \\ Michel Marcus, Nov 28 2019

Formula

a(n) = Sum_{k=1..n-1} k^2*binomial(n, k+1)*(n - k - 1)!.
a(n+1) = (n+1)*a(n) + n^2, with a(1) = 0.
a(n) = A002627(n) - n.