A319013 a(n) is the sum over each permutation of S_n of the least element of the descent set.
0, 1, 7, 37, 201, 1231, 8653, 69273, 623521, 6235291, 68588301, 823059733, 10699776673, 149796873591, 2246953104061, 35951249665201, 611171244308673, 11001082397556403, 209020565553571981, 4180411311071439981, 87788637532500240001, 1931350025715005280463
Offset: 1
Keywords
Examples
For n = 3, the least element of the descent set for each permutation in S_3 is given by the table: +-------------+-------------+----------------------+ | permutation | descent set | least element (or 0) | +-------------+-------------+----------------------+ | 123 | {} | 0 | | 132 | {2} | 2 | | 213 | {1} | 1 | | 231 | {2} | 2 | | 312 | {1} | 1 | | 321 | {1,2} | 1 | +-------------+-------------+----------------------+ Thus a(3) = 0 + 2 + 1 + 2 + 1 + 1 = 7.
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2011; see Section 1.4, pp. 38.
Links
- Peter Kagey, Table of n, a(n) for n = 1..400
Crossrefs
Cf. A002627.
Programs
-
Mathematica
Table[Sum[k^2*Binomial[n, k + 1]*(n - k - 1)!, {k, 1, n - 1}], {n, 1, 15}]
-
PARI
a(n) = sum(k=1, n-1, k^2*binomial(n, k+1)*(n-k-1)!); \\ Michel Marcus, Nov 28 2019
Formula
a(n) = Sum_{k=1..n-1} k^2*binomial(n, k+1)*(n - k - 1)!.
a(n+1) = (n+1)*a(n) + n^2, with a(1) = 0.
a(n) = A002627(n) - n.
Comments