A319041 Numbers k > 1 such that Pell(k) == -1 (mod k).
3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 251, 269, 277, 283, 293, 307, 317, 331, 347, 349, 373, 379, 389, 397, 419, 421, 443, 461, 467, 491, 499, 509, 523, 541, 547, 557
Offset: 1
Keywords
Examples
k = 3 is in the sequence since Pell(3) = 5 = 3*2 - 1 == -1 (mod 3). k = 7 is not in the sequence: Pell(7) = 169 = 7*24 + 1 !== -1 (mod 7).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..9999 (offset adapted by _Georg Fischer_, Jan 31 2019)
Programs
-
Mathematica
Select[Range[800], Mod[Fibonacci[-#, 2], -#]== -1 &] (* Vincenzo Librandi, Sep 09 2018 after Alonso del Arte; {1} removed by Georg Fischer, Jan 31 2019 *)
Comments