cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319041 Numbers k > 1 such that Pell(k) == -1 (mod k).

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 131, 139, 149, 157, 163, 173, 179, 181, 197, 211, 227, 229, 251, 269, 277, 283, 293, 307, 317, 331, 347, 349, 373, 379, 389, 397, 419, 421, 443, 461, 467, 491, 499, 509, 523, 541, 547, 557
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 08 2018

Keywords

Comments

It appears that most of the terms of this sequence are primes. The composite terms are 741, 3827, 11395, 13067, 27971, ... (A319043).
The primes in the sequence give A003629 (primes == +-3 (mod 8)), since for primes p we have Pell(p) == (2/p) (mod p) where (2/p) is the Legendre symbol. - Jianing Song, Sep 10 2018
It appears that this sequence is (A042999 \ {2}) UNION A319043. - Georg Fischer, Oct 17 2018

Examples

			k = 3 is in the sequence since Pell(3) = 5 = 3*2 - 1 == -1 (mod 3).
k = 7 is not in the sequence: Pell(7) = 169 = 7*24 + 1 !== -1 (mod 7).
		

Crossrefs

Cf. A000129 (Pell numbers), A003629, A042999, A319040, A319042, A319043.

Programs