cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319061 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..3, with k running over the positive integers; square array, read by antidiagonals, downwards.

Original entry on oeis.org

557, 901, 1207, 1549, 4607, 1451, 2449, 5176, 2774, 13543, 4049, 10124, 8201, 42269, 24675, 5293, 19601, 13543, 91110, 45124, 39016, 5849, 20924, 24482, 91678, 95236, 302947, 217682, 6193, 22049, 30949, 101399, 188872, 387587, 928423, 165407, 7057, 26018
Offset: 1

Views

Author

Felix Fröhlich, Sep 09 2018

Keywords

Examples

			The array starts as follows:
     557,    901,    1549,    2449,    4049,    5293,    5849,    6193
    1207,   4607,    5176,   10124,   19601,   20924,   22049,   26018
    1451,   2774,    8201,   13543,   24482,   30949,   31457,   40199
   13543,  42269,   91110,   91678,  101399,  132576,  142148,  210258
   24675,  45124,   95236,  188872,  236915,  273971,  296449,  298117
   39016, 302947,  387587,  609436,  637111,  962525, 1015033, 1074751
  217682, 928423, 1546225, 1666084, 1756986, 2105290, 2673538, 2733520
  165407, 215029, 1008933, 1370816, 1487743, 1493395, 1624207, 2998943
		

Crossrefs

Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319062 (t=4), A319063 (t=5), A319064 (t=6), A319065 (t=7).

Programs

  • Mathematica
    rows = 8; t = 3;
    T = Table[lst = {}; b = 2;
       While[Length[lst] < rows,
         p = Prime[n + Range[0, t]];
        If[AllTrue[PowerMod[b,(p-1) p^2], #==1 &], AppendTo[lst, b]]; b++];
       lst, {n, rows}];
    T // TableForm (* Print the A(n,k) table *)
    Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Sep 30 2019 *)
  • PARI
    printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 3, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==4, print1(b, ", "); c++); if(c==terms, break))
    array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
    array(8, 10) \\ print initial 8 rows and 10 columns of array