cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319064 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..6, with k running over the positive integers; square array, read by antidiagonals, downwards.

Original entry on oeis.org

4486949, 4651993, 20950343, 4941649, 21184318, 23250274, 5571593, 33538051, 163075007, 741652533, 11903257, 78868324, 189850207, 882345432, 710808570, 19397501, 86892632, 230695118, 1528112512, 5126829291, 2380570527, 19841257, 111899224, 421883318, 1701241810
Offset: 1

Views

Author

Felix Fröhlich, Sep 11 2018

Keywords

Examples

			The array starts as follows:
    4486949,    4651993,    4941649,    5571593,   11903257,   19397501,   19841257
   20950343,   21184318,   33538051,   78868324,   86892632,  111899224,  126664001
   23250274,  163075007,  189850207,  230695118,  421883318,  422771099,  497941351
  741652533,  882345432, 1528112512, 1701241810, 1986592318, 2005090271, 2596285385
  710808570, 5126829291
  2380570527
		

Crossrefs

Cf. analog for i = 0..t: A319059 (t=1), A319060 (t=2), A319061 (t=3), A319062 (t=4), A319063 (t=5), A319065 (t=7).

Programs

  • Mathematica
    rows = 6; t = 6;T = Table[lst = {}; b = 2;
       While[Length[lst] < rows - n + 1,
         p = Prime[n + Range[0, t]];
        If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &],
         AppendTo[lst, b]]; b++];
       lst, {n, rows}];
    T // TableForm (* Print the A(n,k) table *)
    Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Oct 03 2019 *)
  • PARI
    printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 6, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==7, print1(b, ", "); c++); if(c==terms, break))
    array(rows, cols) = for(x=1, rows, printrow(x, cols); print(""))
    array(5, 7) \\ print initial 5 rows and 7 columns of array