A319064 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..6, with k running over the positive integers; square array, read by antidiagonals, downwards.
4486949, 4651993, 20950343, 4941649, 21184318, 23250274, 5571593, 33538051, 163075007, 741652533, 11903257, 78868324, 189850207, 882345432, 710808570, 19397501, 86892632, 230695118, 1528112512, 5126829291, 2380570527, 19841257, 111899224, 421883318, 1701241810
Offset: 1
Examples
The array starts as follows: 4486949, 4651993, 4941649, 5571593, 11903257, 19397501, 19841257 20950343, 21184318, 33538051, 78868324, 86892632, 111899224, 126664001 23250274, 163075007, 189850207, 230695118, 421883318, 422771099, 497941351 741652533, 882345432, 1528112512, 1701241810, 1986592318, 2005090271, 2596285385 710808570, 5126829291 2380570527
Crossrefs
Programs
-
Mathematica
rows = 6; t = 6;T = Table[lst = {}; b = 2; While[Length[lst] < rows - n + 1, p = Prime[n + Range[0, t]]; If[AllTrue[PowerMod[b, (p - 1), p^2], # == 1 &], AppendTo[lst, b]]; b++]; lst, {n, rows}]; T // TableForm (* Print the A(n,k) table *) Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Oct 03 2019 *)
-
PARI
printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 6, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==7, print1(b, ", "); c++); if(c==terms, break)) array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) array(5, 7) \\ print initial 5 rows and 7 columns of array