A319065 A(n, k) is the k-th number b > 1 such that b^(prime(n+i)-1) == 1 (mod prime(n+i)^2) for each i = 0..7, with k running over the positive integers; square array, read by antidiagonals, downwards.
126664001, 133487693, 230695118, 141313157, 633266299, 882345432, 236176001, 1221760151, 1986592318, 12106746963, 242883757, 1575527851, 2715632968, 12709975396, 93732236423, 356977349, 1881738424, 3726163057, 38456038702, 122728381675, 66888229817
Offset: 1
Examples
The array starts as follows: 126664001, 133487693, 141313157, 236176001, 242883757, 356977349, 358254649 230695118, 633266299, 1221760151, 1575527851, 1881738424, 2118321224 882345432, 1986592318, 2715632968, 3726163057, 5229752849 12106746963, 12709975396, 38456038702, 66479920578 93732236423, 122728381675, 143904477566 66888229817, 79246182226 84391291750
Crossrefs
Programs
-
Mathematica
rows = 7; t = 7; T = Table[lst = {}; b = 2; While[Length[lst] < rows - n + 1, fnd = True; For[i = 0, i <= t, i++, p = Prime[n + i]; If[PowerMod[b, (p - 1), p^2] != 1 , fnd = False; Break[]]]; If[fnd, AppendTo[lst, b]]; b++]; lst, {n, rows}]; T // TableForm (* Print the A(n,k) table *) Flatten[Table[T[[j, i - j + 1]], {i, 1, rows}, {j, 1, i}]] (* Robert Price, Oct 07 2019 *)
-
PARI
printrow(n, terms) = my(c=0); for(b=2, oo, my(j=0); for(i=0, 7, my(p=prime(n+i)); if(Mod(b, p^2)^(p-1)==1, j++)); if(j==8, print1(b, ", "); c++); if(c==terms, break)) array(rows, cols) = for(x=1, rows, printrow(x, cols); print("")) array(3, 3) \\ print initial 3 rows and 3 columns of array
Extensions
a(7)-a(21) from Robert Price, Oct 07 2019