A319077 Number of non-isomorphic strict multiset partitions (sets of multisets) of weight n with empty intersection.
1, 0, 1, 3, 12, 37, 130, 428, 1481, 5091, 17979, 64176, 234311, 869645, 3295100, 12720494, 50083996, 200964437, 821845766, 3423694821, 14524845181, 62725701708, 275629610199, 1231863834775, 5597240308384, 25844969339979, 121224757935416, 577359833539428, 2791096628891679
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(2) = 1 through a(4) = 12 strict multiset partitions with empty intersection: 2: {{1},{2}} 3: {{1},{2,2}} {{1},{2,3}} {{1},{2},{3}} 4: {{1},{2,2,2}} {{1},{2,3,3}} {{1},{2,3,4}} {{1,1},{2,2}} {{1,2},{3,3}} {{1,2},{3,4}} {{1},{2},{1,2}} {{1},{2},{2,2}} {{1},{2},{3,3}} {{1},{2},{3,4}} {{1},{3},{2,3}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} R(q, n)={vector(n, t, subst(x*Ser(K(q, t, n\t)/t), x, x^t))} a(n)={my(s=0); forpart(q=n, my(f=prod(i=1, #q, 1 - x^q[i]), u=R(q,n)); s+=permcount(q)*sum(k=0, n, my(c=polcoef(f,k)); if(c, c*polcoef(exp(sum(t=1, n\(k+1), x^(t*k)*u[t] - subst(x^(t*k)*u[t] + O(x*x^(n\2)), x, x^2), O(x*x^n) ))*if(k,1+x^k,1), n))) ); s/n!} \\ Andrew Howroyd, May 30 2023
Extensions
Terms a(11) and beyond from Andrew Howroyd, May 30 2023
Comments