A319079 Number of connected antichains of sets whose multiset union is an integer partition of n.
1, 1, 2, 3, 4, 4, 8, 7, 12, 15, 19, 26, 43
Offset: 0
Examples
The a(10) = 19 clutters: {{10}} {{1,9}} {{2,8}} {{3,7}} {{4,6}} {{1,2,7}} {{1,3,6}} {{1,4,5}} {{2,3,5}} {{1,2,3,4}} {{5},{5}} {{1,2},{1,6}} {{1,2},{2,5}} {{1,3},{1,5}} {{1,4},{1,4}} {{2,3},{2,3}} {{1,2},{1,2},{1,3}} {{2},{2},{2},{2},{2}} {{1},{1},{1},{1},{1},{1},{1},{1},{1},{1}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]]; antiQ[s_]:=Select[Tuples[s,2],And[UnsameQ@@#,submultisetQ@@#]&]=={}; Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[And@@UnsameQ@@@#,Length[csm[#]]==1,antiQ[#]]&]],{n,10}]