cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319092 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1, k) + 2*T(n-1, k-1) + 3*T(n-1, k-2) + 4*T(n-1, k-3) + 5*T(n-1, k-4) + 6*T(n-1, k-5) for k = 0..5*n; T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 1, 4, 10, 20, 35, 56, 70, 76, 73, 60, 36, 1, 6, 21, 56, 126, 252, 441, 684, 954, 1204, 1365, 1344, 1169, 882, 540, 216, 1, 8, 36, 120, 330, 792, 1688, 3232, 5619, 8944, 13088, 17568, 21642, 24456, 25236, 23528, 19489, 14232, 8856, 4320, 1296, 1, 10, 55, 220, 715, 2002, 4970
Offset: 0

Views

Author

Shara Lalo, Oct 01 2018

Keywords

Comments

Row n gives the coefficients in the expansion of (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5)^n, where n is a nonnegative integer.
The row sum is s(n)=21^n (see A009965).
In the center-justified triangle, the sum of numbers along "first layer" skew diagonals pointing top-right are the coefficients in the expansion of 1/(1 - x - 2*x^2 -3*x^3 - 4*x^4 - 5*x^5 - 6*x^6) and the sum of numbers along "first layer" skew diagonals pointing top-left are the coefficients in the expansion of 1/(1 - 6*x - 5*x^2 - 4*x^3 - 3*x^4 - 2*x^5 - x^6), see links.

Examples

			Triangle begins:
1;
1, 2,  3,  4,   5,   6;
1, 4, 10, 20,  35,  56,  70,  76,  73,  60,    36;
1, 6, 21, 56, 126, 252, 441, 684, 954, 1204, 1365, 1344, 1169, 882, 540, 216;
...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = Sum[(2^(k + q - 2*r)*3^(j + r - 2*q)*4^(i + q - 2*j)*5^(j - 2*i)*6^i*n!)/((n - k + r)!*(k + q - 2*r)!*(j + r - 2*q)!*(i + q -2*j)!*(j - 2*i)!*i!), {i, 0, k}, {j, 2*i, k}, {q, 3*i, k}, {r, 4*i, k}]; Flatten[Table[t[n, k], {n, 0, 5}, {k, 0, 5 n}]]
    t[0, 0] = 1; t[n_, k_] :=  t[n, k] =   If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 1, k - 1] + 3 t[n - 1, k - 2] + 4 t[n - 1, k - 3] + 5 t[n - 1, k - 4] + 6 t[n - 1, k - 5]]; Table[t[n, k], {n, 0, 5}, {k, 0, 5 n}  ]  // Flatten
  • PARI
    row(n) = Vecrev((1+2*x+3*x^2+4*x^3+5*x^4+6*x^5)^n);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Oct 15 2018

Formula

T(n,k) = Sum_{i=0..k} Sum_{j=2*i..k} Sum_{q=3*i..k} Sum_{r=4*i..k}(f) for k=0..5*n; f=((2^(k + q - 2*r)*3^(j + r - 2*q)*4^(i + q - 2*j)*5^(j - 2*i)*6^i*n!)/((n - k + r)!*(k + q - 2*r)!*(j + r - 2*q)!*(i + q - 2*j)!*(j - 2*i)!*i!) ); f=0 for (n - k + r)<0 or (k + q - 2*r)<0; (j + r - 2*q)<0 or (i + q - 2*j) <0 or (j - 2*i)<0. A novel formula proven by Shara Lalo and Zagros Lalo. Also see formula in Links section.
G.f.: 1/(1 - x*t- 2*x^2*t - 3*x^3*t - 4*x^4*t - 5*x^5*t - 6*x^6*t).