A319094 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1, k) + T(n-1, k-1) + 2 T(n-1, k-2) + T(n-1, k-3) + T(n-1, k-4) + T(n-1, k-5) + T(n-1, k-6) for k = 0..6*n; T(n,k)=0 for n or k < 0.
1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 5, 6, 8, 8, 9, 8, 7, 4, 3, 2, 1, 1, 3, 9, 16, 27, 36, 47, 54, 60, 58, 54, 45, 37, 27, 18, 10, 6, 3, 1, 1, 4, 14, 32, 65, 108, 166, 228, 296, 352, 396, 412, 409, 380, 336, 276, 215, 156, 108, 68, 39, 20, 10, 4, 1, 1, 5, 20, 55, 130, 256, 455, 725, 1075, 1475, 1907, 2310, 2655, 2885
Offset: 0
Examples
Triangle begins: 1; 1, 1, 2, 1, 1, 1, 1; 1, 2, 5, 6, 8, 8, 9, 8, 7, 4, 3, 2, 1; 1, 3, 9, 16, 27, 36, 47, 54, 60, 58, 54, 45, 37, 27, 18, 10, 6, 3, 1; ...
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
Links
- Shara Lalo, Triangle of coefficients in expansions of (1 + x + 2*x^2 + x^3 + x^4 + x^5 + x^6)^n.
- Shara Lalo, First layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + x + 2 x^2 + x^3 + x^4 + x^5 + x^6)^n.
- Shara Lalo, Formulas for the coefficients in expansions of (1 + x + 2*x^2 + x^3 + x^4 + x^5 + x^6)^n.
Programs
-
Mathematica
Clear[t, n, k];t[n_, k_] := t[n, k] = Sum[(2^(q - 2*r + p)*n!)/((n + p - k)!*(k + r - 2*p)!*(q - 2*r + p)!*(j - 2*q +r)!*(i - 2*j + q)!*(j - 2*i)!*i!), {i, 0, k}, {j, 2*i,k}, {q, 3*i, k}, {r, 4*i, k}, {p, 5*i, k}]; Flatten[Table[t[n, k], {n, 0, 3}, {k, 0, 6*n}]] t[n_, k_] := t[n, k] = Sum[(2^(q - 2*r + p)*n!)/((n + p - k)!*(k + r - 2*p)!*(q - 2*r + p)!*(j - 2*q + r)!*(i - 2*j + q)!*(j - 2*i)!*i!), {i, 0, k}, {j, 0, k}, {q, 0, k}, {r, 0, k}, {p, 0, k}]; Table[t[n, k], {n, 0, 3}, {k, 0, 6*n}] // Flatten
-
PARI
row(n) = Vecrev((1 + x + 2*x^2 + x^3 + x^4 + x^5 + x^6)^n); tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Oct 15 2018
Formula
T(n,k) = Sum_{i=0..k} Sum_{j=2*i..k} Sum_{q=3*i..k} Sum_{r=4*i..k} Sum_{p=5*i..k }(f) for k=0..6*n; f = (2^(q - 2*r + p)*n!)/((n + p - k)!*(k + r - 2*p)!*(q - 2*r + p)!*(j - 2*q + r)!*(i - 2*j + q)!*(j - 2*i)!*i!); f=0 for (n + p - k)<0 or (k + r - 2*p)<0 or (q - 2*r + p)<0 or (j - 2*q + r)<0 or (i - 2*j + q)<0 or (j - 2*i)<0.
G.f.: 1/(1 - t*x - t*x^2 - 2*t*x^3 - t*x^4 - t*x^5 - t*x^6 - t*x^7).
Comments