cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319107 Expansion of Product_{k>=1} (1 + x^k)^(sigma_1(k)-k), where sigma_1(k) = sum of divisors of k (A000203).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 9, 5, 17, 17, 38, 33, 88, 75, 169, 181, 343, 353, 712, 728, 1348, 1518, 2591, 2898, 5025, 5615, 9259, 10866, 17160, 20111, 31775, 37264, 57130, 68782, 102663, 123698, 183793, 221708, 323077, 395325, 566079, 693248, 987086, 1210110, 1700074, 2100674, 2915549
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Comments

Convolution of A192065 and A255528.
Weigh transform of A001065.

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul((1+x^k)^(sigma(k)-k),k=1..100),x=0,47): seq(coeff(a,x,n),n=0..46); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 + x^k)^(DivisorSigma[1, k] - k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 46; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[1, d] - d), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (DivisorSigma[1, d] - d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 46}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A001065(k).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d*(sigma_1(d) - d) ) * x^k/k).
a(n) ~ exp(-Pi^4 / (864*(Pi^2 - 6)*Zeta(3)) - Pi^2 * n^(1/3) / (12*(2*(Pi^2 - 6)*Zeta(3))^(1/3)) + 3*((Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3) / 2^(5/3)) * ((Pi^2 - 6)*Zeta(3))^(1/6) / (2^(17/24) * sqrt(3*Pi) * n^(2/3)). - Vaclav Kotesovec, Sep 11 2018