cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319130 Expansion of Product_{k>=1} 1/(1 - x^k)^(2^omega(k)), where omega(k) = number of distinct primes dividing k (A001221).

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 31, 47, 81, 125, 203, 305, 482, 710, 1082, 1582, 2348, 3380, 4933, 7007, 10048, 14136, 19972, 27796, 38822, 53510, 73903, 101033, 138165, 187351, 254055, 341923, 459956, 614904, 821162, 1090740, 1447109, 1910665, 2519325, 3308019, 4336956
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Comments

Euler transform of A034444.

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul(1/(1-x^k)^(2^nops(factorset(k))),k=1..50),x=0,41): seq(coeff(a,x,n),n=0..40); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - x^k)^(2^PrimeNu[k]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[DivisorSum[k, # &, SquareFreeQ[#] &] x^k/(k (1 - x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d 2^PrimeNu[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A034444(k).
G.f.: exp(Sum_{k>=1} A048250(k)*x^k/(k*(1 - x^k))).
G.f.: exp(Sum_{k>=1} Sum_{j>=1} mu(j)^2*x^(j*k)/(k*(1 - x^(j*k)))), where mu = Möbius function (A008683).
log(a(n)) ~ sqrt(2*n*log(n)). - Vaclav Kotesovec, Sep 13 2018