A319142 Total number of binary digits in the partitions of n into odd parts.
1, 2, 5, 7, 12, 19, 26, 36, 52, 71, 92, 124, 158, 204, 265, 331, 413, 522, 641, 791, 976, 1184, 1435, 1741, 2093, 2506, 3005, 3574, 4237, 5030, 5928, 6971, 8202, 9593, 11212, 13087, 15210, 17653, 20472, 23665, 27308, 31488, 36205, 41570, 47701, 54584, 62387
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
h:= proc(n) option remember; 1+ilog2(n) end: b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, b(n, i-1-irem(i, 2))+`if`(i::even or i>n, 0, (p-> p+[0, p[1]*h(i)])(b(n-i, i))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=1..60); # Alois P. Heinz, Sep 27 2018
-
Mathematica
h[n_] := h[n] = 1 + Floor@Log[2, n]; b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, b[n, i-1-Mod[i, 2]] + If[EvenQ[i] || i>n, 0, Function[p, p + {0, p[[1]] h[i]}][b[n - i, i]]]]]; a[n_] := b[n, n][[2]]; Array[a, 60] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)