cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319150 a(n) = gcd(A275286(n), A001818(n+1)) / A025549(n+1)^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Tristan Cam, Nov 08 2018

Keywords

Comments

A(n) = a(n)*A025549(n+1)^2 = gcd(B(n), C(n)).
B(n) = A275286(n).
C(n) = A001818(n+1).
At first gcd(B(n), C(n)) = A025549(n+1)^2, but from n = 27 to n = 37, gcd(B(n), C(n)) = 11*A025549(n+1)^2, and then comes back to normal, then equals 19*A025549(n+1)^2, comes back to normal again, and so on ...
Let S(n) = Sum_{k=0..n} ((-1)^k)/(2*k+1)^2 (S(n) is NOT an integer sequence).
Notice that when n approaches +oo, D(n) converges to Catalan's constant (A006752).
A294970(n) is equal to the numerator of S(n) (when reduced).
Therefore B(n)/A(n) = A294970(n)
A294971(n) is equal to the denominator of S(n) (when reduced).
Therefore C(n)/A(n) = A294971(n).
This sequence was used to study the expression B(n)/C(n) (which equals S(n)) in an attempt to find out if Catalan's constant is irrational.

Examples

			For n = 5:
B(n) = A275286(5) = 98607816;
C(n) = A001818(5+1) = 108056025;
gcd(98607816,108056025) = A(5) = 9;
A025549(5+1)^2 = 3^2 = 9;
So a(5) = A(5)/A025549(5+1)^2 = 9/9 = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD[(2n+1)!!^2 * Sum[(-1)^k/(2k+1)^2, {k, 0, n}], (2n+1)!!^2]*
    LCM @@ Range[1, 2n+1, 2]^2 / ((2n+1)!!)^2; Array[a, 100, 0] (* Amiram Eldar, Nov 16 2018 *)
  • PARI
    dfo(n) = (2*n)! / n! / 2^n;
    a6(n) = dfo(n+1)^2*sum(k=0, n, (-1)^k/(2*k+1)^2);
    a8(n) = ((2*n)!/(n!*2^n))^2;
    a9(n) = (((2*n)!/n!)/2^n)/lcm(vector(n, i, 2*i-1));
    a(n) = gcd(a6(n) , a8(n+1)) / a9(n+1)^2; \\ Michel Marcus, Nov 08 2018

Formula

Explicit formula:
a(n) = gcd( ((2*n+1)!!)^2 * (Sum_{i=0..n}((-1)^i)/(2*i+1)^2), ((2*n+1)!!)^2 ) / ( (((2*n+1)!!)^2) / ( lcm{1,3,5,...,2*n+1} ) )^2.
A few relations:
gcd(A275286(n), A001818(n+1)) = a(n)*A025549(n+1)^2 = A(n);
A275286(n)/A(n) = A294970(n);
A001818(n+1)/A(n) = A294971(n);
Limit_{n->+oo} A294970(n)/A294971(n) = G (Catalan's Constant, decimal expansion: A006752).