A319203 Triangular Riordan matrix T = R^(-1) for triangular Riordan matrix R = (1/(1 - x^2 - x^3), x/(1 - x^2 - x^3)) = A104578.
1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 2, -2, -3, 0, 1, 5, 5, -3, -4, 0, 1, -2, 12, 9, -4, -5, 0, 1, -21, -7, 21, 14, -5, -6, 0, 1, -14, -56, -16, 32, 20, -6, -7, 0, 1, 72, -30, -108, -30, 45, 27, -7, -8, 0, 1, 138, 210, -45, -180, -50, 60, 35, -8, -9, 0, 1
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... ------------------------------------------------- 0: 1 1: 0 1 2: -1 0 1 3: -1 -2 0 1 4: 2 -2 -3 0 1 5; 5 5 -3 -4 0 1 6: -2 12 9 -4 -5 0 1 7: -21 -7 21 14 -5 -6 0 1 8: -14 -56 -16 32 20 -6 -7 0 1 9: 72 -30 -108 -30 45 27 -7 -8 0 1 10: 138 210 -45 -180 -50 60 35 -8 -9 0 1 ... Recurrence from A- and Z-sequence: 5 = T(5, 0) = -(-2 + (-3)); 9 = T(6, 2) = 5 - (- 4 + 0). Recurrence of Boas-Buck type, with B = [0,-2,-3, 6, ...] = A319204: 9 = T(6, 2) = ((2+1)/(6-2))*(6*1 + (-3)*0 + (-2)*(-3) + 0*(-3)) = (3/4)*12 = 9.
Programs
-
Mathematica
(* The function RiordanArray is defined in A256893. *) nmax = 10; R = RiordanArray[1/(1 - #^2 - #^3)&, #/(1 - #^2 - #^3)&, nmax+1]; M = Inverse[PadRight[#, nmax+1]& /@ R]; T[n_, k_] := M[[n+1, k+1]]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
Formula
Recurrence from the Z- and A-sequence: T(n, k) = 0 if n < k; T(0, 0) = 1;
T(n, 0) = -(T(n-1, 1) + T(n-1, 2)), for n >= 1; and T(n, m) = T(n-1, k-1) - T(n-1, k+1) - T(n-1, k+2), for n>=1 and k >= 1.
Boas-Buck recurrence with B(n) = A319204(n): T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} b(n-1-j)*T(j, k), for n >= 1, k = 0,1, ..., n-1, and input T(n,n) = 1, for n >= 0.
G.f. of row polynomials R(n,x) = Sum_{k=0..n} T(n, k)*x^k is G(x,z) = f(z)/(1-x*z*f(z)) with the expansion of f given in A319201.
G.f. of column sequences Gcol(k, x) = x^k*f(x)^{k+1}, for k >= 0.
Comments