cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319204 Sequence used for the Boas-Buck type recurrence for Riordan triangle A319203.

Original entry on oeis.org

0, -2, -3, 6, 20, -5, -105, -98, 420, 1008, -990, -6501, -2574, 31603, 52052, -107250, -411944, 81328, 2343042, 2413456, -9883800, -25327722, 23371634, 168185131, 77113020, -835281800, -1452148815, 2847865635, 11561517870, -1613666430, -66318892875, -72637680690, 280330495200, 750725215020
Offset: 0

Views

Author

Wolfdieter Lang, Oct 29 2018

Keywords

Comments

See A319203 for the Boas-Buck type recurrence.

Examples

			a(5) = (1/6!)*[d^6/dx^6 (1 - x^2 - x^3)^6] for x = 0, which is -5.
a(5) = +15 - 20 = -5; from the sum of the signed row n=6 in A321203, with parity of e2 + e3 from A321201 even and odd.
		

Crossrefs

Formula

O.g.f.: (log(f(x)))' = (1/(1/f(x) + x^2*f(x) + 2*x^3*f(x)^2) - 1)/x, with the expansion of f given in A319201. f(x) = F^{[-1]}(x)/x, where F(t) = t/(1 - t^2 - t^3).
a(n) = (1/(n+1)!)*[d^(n+1)/dx^(n+1) (1 - x^2 - x^3)^(n+1)] evaluated at x = 0, for n >= 0. (Cf. Joerg Arndt's conjecture for A176806, which is proved there.)
a(n-1) = Sum_{2*e + 3*e3 = n} (-1)^(e2+e3)*n!/((n - (e2+e3))!*e2!*e3!), n >= 2, with a(0) = 0. The pairs (e2, e3) are given in A321201; see also the multinomial coefficient table A321203 and add the sign factors.

A321204 Row sums of Riordan triangle A319203.

Original entry on oeis.org

1, 1, 0, -2, -2, 4, 11, -3, -46, -38, 152, 334, -301, -1855, -719, 7869, 12450, -23422, -87520, 12924, 447028, 458664, -1699630, -4308816, 3528771, 26104199, 12852166, -118868366, -207528889, 368534179, 1517678456, -109794866, -8068372174, -9080718086, 31552958156, 85735418464, -63813069724, -530936155928, -300127192606
Offset: 0

Views

Author

Wolfdieter Lang, Nov 09 2018

Keywords

Comments

The alternating row sums are given in A321205.

Crossrefs

Formula

G.f: f(x)/(1 - x*f(x)) where f(x) = F^([-1])(x)/x with F^{[-1]}(y) the compositional inverse of F(x) = x/(1 - x^2 - x^3). The expansion of f is given in A319201.

A321205 Alternating row sums of Riordan triangle A319203.

Original entry on oeis.org

1, -1, 0, 0, 2, 0, -5, -7, 14, 42, -12, -198, -165, 715, 1573, -1573, -9282, -3094, 41548, 63308, -131784, -468996, 111758, 2496144, 2369851, -9926455, -23864570, 22785180, 150243015, 60480225, -709314480, -1161220320, 2325542190, 8874775170, -1613776920
Offset: 0

Views

Author

Wolfdieter Lang, Nov 09 2018

Keywords

Comments

The row sums are given in A321204.

Crossrefs

Formula

G.f: f(x)/(1 + x*f(x)) where f(x) = F^([-1])(x)/x with F^{[-1]}(y) the compositional inverse of F(x) = x/(1 - x^2 - x^3). The expansion of f is given in A319201.

A104578 A Padovan convolution triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 3, 0, 1, 2, 3, 3, 4, 0, 1, 2, 6, 6, 4, 5, 0, 1, 3, 7, 12, 10, 5, 6, 0, 1, 4, 12, 16, 20, 15, 6, 7, 0, 1, 5, 17, 30, 30, 30, 21, 7, 8, 0, 1, 7, 24, 45, 60, 50, 42, 28, 8, 9, 0, 1, 9, 36, 70, 95, 105, 77, 56, 36, 9, 10, 0, 1, 12, 50, 111, 160, 175, 168, 112, 72
Offset: 0

Views

Author

Paul Barry, Mar 16 2005

Keywords

Comments

A Padovan convolution triangle. See A000931 for the Padovan sequence.
Row sums are tribonacci numbers A000073(n+2). Antidiagonal sums are A008346. The first columns are A000931(n+3), A228577.
From Wolfdieter Lang, Oct 30 2018: (Start)
The alternating row sums give A001057(n+1), for n >= 0.
The inverse of this Riordan triangle is given in A319203.
The row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k, with R(-1, x) = 0, appear in the Cayley-Hamilton formula for nonnegative powers of a 3 X 3 matrix with Det M = sigma(3;3) = x1*x2*x3 = +1, sigma(3; 2) := x1*x2 + x1*x*3 + x2*x^3 = -1 and Tr M = sigma(3; 1) = x1 + x2 = x, where x1, x2, and x3, are the eigenvalues of M, and sigma the elementary symmetric functions, as M^n = R(n-2, x)*M^2 + (R(n-3, x) + R(n-4, x))*M + R(n-3, x)*1_3, for n >= 3, where M^0 = 1_3 is the 3 X 3 unit matrix.
For the Cayley-Hamilton formula for 3 X 3 matrices with Det M = +1, sigma(3,2) = +1 and Tr(M) = x see A321196.
(End)

Examples

			From _Wolfdieter Lang_, Oct 30 2018: (Start)
The triangle T begins:
    n\k   0  1  2  3  4  5  6  7  8  9 10 ...
    --------------------------------------
    0:    1
    1:    0  1
    2:    1  0  1
    3:    1  2  0  1
    4:    1  2  3  0  1
    5:    2  3  3  4  0  1
    6:    2  6  6  4  5  0  1
    7:    3  7 12 10  5  6  0  1
    8:    4 12 16 20 15  6  7  0  1
    9:    5 17 30 30 30 21  7  8  0  1
   10:    7 24 45 60 50 42 28  8  9  0  1
   ...
Cayley-Hamilton formula for the tribonacci Q-matrix TQ(x) =[[x,1,1], [1,0,0], [0,1,0]] with Det(TQ) = +1, sigma(3, 2) = -1, and Tr(TQ) = x. For n = 3: TQ(x)^3 = R(1, x)*TQ(x)^2  + (R(0 x) + R(-1, x))*TQ(x) + R(0, x)*1_3 = x*TQ(x)^2 + TQ(x) + 1_3. For x = 1 see also A058265 (powers of the tribonacci constant).
Recurrence: T(6, 2) = T(5, 1) + T(4, 2) + T(3, 2) = 3 + 3 + 0 = 6.
Z- and A- recurrence with A319202 = {1, 0, 1, 1, -1, -3, 0, ...}:
  T(5, 0) = 0*1 + 1*2 + 1*3 + (-1)*0 + (-3)*1 = 2; T(5,2) = 1*2 + 0*3 + 1*0 + 1*1 = 3.
Boas-Buck type recurrence with b = {0, 2, 3, ...}: T(5, 2) = ((1+2)/(5-2)) * (3*1 + 2*0 + 0*3) = 1*3 = 3.
(End)
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + T[n-2, k] + T[n-3, k]; T[0, 0] = 1; T[, ] = 0; Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array( 1/(1 - x^2 - x^3), x/(1 - x^2 - x^3), 8) # Peter Luschny, Nov 09 2018

Formula

Riordan array (1/(1 - x^2 - x^3), x/(1 - x^2 - x^3)).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-3,k), T(0,0)=1, T(n,k)=0 if k > n or if k < n. - Philippe Deléham, Jan 08 2014
From Wolfdieter Lang, Oct 30 2018: (Start)
The Riordan property T = (G(x), x*G(x)) with G(x)= 1/(1-x^2-x^3) implies the following.
G.f. of row polynomials R(n, x) is G(x,z) = 1/(1- x*z - z^2 - z^3).
G.f. of column sequence k: x^k/(1 - x^2 - x^3)^(k+1), k >= 0.
Boas-Buck recurrence (see the Aug 10 2017 remark in A046521, also for the reference):
T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} b(n-1-j)*T(j, k), for n >= 1, k = 0,1, ..., n-1, and input T(n,n) = 1, for n >= 0. Here b(n) = [x^n]*(d/dx)log(G(x)) = A001608(n+1), for n >= 0.
Recurrences from the A- and Z- sequences (see the W. Lang link under A006232 with references), which are A(n) = A319202(n) and Z(n) = A(n+1).
T(0, 0) = 1, T(n, k) = 0 for n < k, and
T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1, and
T(n, k) = Sum_{j=0..n-k} A(j)*T(n-1, k-1+j), for n >= m >= 1.
(End)
Showing 1-4 of 4 results.