A319203
Triangular Riordan matrix T = R^(-1) for triangular Riordan matrix R = (1/(1 - x^2 - x^3), x/(1 - x^2 - x^3)) = A104578.
Original entry on oeis.org
1, 0, 1, -1, 0, 1, -1, -2, 0, 1, 2, -2, -3, 0, 1, 5, 5, -3, -4, 0, 1, -2, 12, 9, -4, -5, 0, 1, -21, -7, 21, 14, -5, -6, 0, 1, -14, -56, -16, 32, 20, -6, -7, 0, 1, 72, -30, -108, -30, 45, 27, -7, -8, 0, 1, 138, 210, -45, -180, -50, 60, 35, -8, -9, 0, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------
0: 1
1: 0 1
2: -1 0 1
3: -1 -2 0 1
4: 2 -2 -3 0 1
5; 5 5 -3 -4 0 1
6: -2 12 9 -4 -5 0 1
7: -21 -7 21 14 -5 -6 0 1
8: -14 -56 -16 32 20 -6 -7 0 1
9: 72 -30 -108 -30 45 27 -7 -8 0 1
10: 138 210 -45 -180 -50 60 35 -8 -9 0 1
...
Recurrence from A- and Z-sequence: 5 = T(5, 0) = -(-2 + (-3)); 9 = T(6, 2) = 5 - (- 4 + 0).
Recurrence of Boas-Buck type, with B = [0,-2,-3, 6, ...] = A319204: 9 = T(6, 2) = ((2+1)/(6-2))*(6*1 + (-3)*0 + (-2)*(-3) + 0*(-3)) = (3/4)*12 = 9.
-
(* The function RiordanArray is defined in A256893. *)
nmax = 10;
R = RiordanArray[1/(1 - #^2 - #^3)&, #/(1 - #^2 - #^3)&, nmax+1];
M = Inverse[PadRight[#, nmax+1]& /@ R];
T[n_, k_] := M[[n+1, k+1]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
A319202
a(n) is the A-sequence for the Riordan matrix R = (1/(1- x^2 - x^3), x/(1 - x^2 - x^3)) from A104578.
Original entry on oeis.org
1, 0, 1, 1, -1, -3, 0, 10, 10, -28, -70, 42, 348, 198, -1353, -2431, 3575, 15587, 702, -74698, -89726, 264214, 753236, -441864, -4308174, -2823020, 18594787, 36373695, -52468405, -249712725, -24858975, 1267523445, 1639209195, -4671244455, -14174703810
Offset: 0
A001057
Canonical enumeration of integers: interleaved positive and negative integers with zero prepended.
Original entry on oeis.org
0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 8, -8, 9, -9, 10, -10, 11, -11, 12, -12, 13, -13, 14, -14, 15, -15, 16, -16, 17, -17, 18, -18, 19, -19, 20, -20, 21, -21, 22, -22, 23, -23, 24, -24, 25, -25, 26, -26, 27, -27, 28, -28, 29, -29, 30, -30, 31, -31
Offset: 0
G.f. = x - x^2 + 2*x^3 - 2*x^4 + 3*x^5 - 3*x^6 + 4*x^7 - 4*x^8 + 5*x^9 - 5*x^10 + ...
- T. D. Noe, Table of n, a(n) for n = 0..1000
- D. Efimov, Determinants of generalized binary band matrices, arXiv:1702.05655 [math.RA], 2017.
- G. Myerson and A. J. van der Poorten, Some problems concerning recurrence sequences, Amer. Math. Monthly 102 (1995), no. 8, 698-705.
- Omar E. Pol, Illustration of initial terms of A001057, A005132, A000217
- Wikipedia, 1 - 2 + 3 - 4 + ...
- Index entries for linear recurrences with constant coefficients, signature (-1,1,1).
Alternating row sums of
A104578 are a(n+1), for n >= 0.
-
a001057 n = (n' + m) * (-1) ^ (1 - m) where (n',m) = divMod n 2
a001057_list = 0 : concatMap (\x -> [x,-x]) [1..]
-- Reinhard Zumkeller, Apr 02 2012
-
a := n -> (1-(-1)^n*(2*n+1))/4; # Peter Luschny, Jul 12 2009
-
Join[{0},Riffle[Range[35],-Range[35]]] (* Harvey P. Dale, Sep 21 2011 *)
a[ n_] := -(-1)^n Ceiling[n/2]; (* Michael Somos, Jun 05 2013 *)
LinearRecurrence[{-1, 1, 1}, {0, 1, -1}, 63] (* Jean-François Alcover, Jan 07 2019 *)
-
{a(n) = if( n%2, n\2 + 1, -n/2)}; /* Michael Somos, Jul 20 1999 */
-
def a(n): return n//2 + 1 if n%2 else -n//2
print([a(n) for n in range(63)]) # Michael S. Branicky, Jul 14 2022
A319201
Expansion of f(t) = F^{[-1]}(t)/t, where F(x) = x/(1 - x^2 - x^3).
Original entry on oeis.org
1, 0, -1, -1, 2, 5, -2, -21, -14, 72, 138, -165, -803, -143, 3575, 4732, -11674, -36244, 15130, 195738, 152456, -799102, -1700272, 2042975, 11038183, 2582670, -53547795, -76684530, 185864265, 618689190, -231325605, -3506922585, -2974386450, 14866619160, 33459332610, -38401746930, -223156727472
Offset: 0
a(8) = (1/9)*[x^8] (1- x^2 - x^3)^9 = (1/9)*(-126) = -14.
a(8) = (1/9)*(- 9!/(6!*1!*2!) + 9!/(5!*0!*4!)) = -14, from the two solutions for [e2, e3], namely [1, 2] (parity odd) and [0, 4] (parity even).
-
f := series(x/(1 - x^2 -x^3), x, 40):
r := gfun:-seriestoseries(f, 'revogf'):
gf := convert(r, polynom) / x:
seq(coeff(gf,x,n), n=0..36); # Peter Luschny, Nov 09 2018
A321196
Riordan triangle T = (1/(1 + x^2 - x^3), x/(1 + x^2 - x^3)).
Original entry on oeis.org
1, 0, 1, -1, 0, 1, 1, -2, 0, 1, 1, 2, -3, 0, 1, -2, 3, 3, -4, 0, 1, 0, -6, 6, 4, -5, 0, 1, 3, -1, -12, 10, 5, -6, 0, 1, -2, 12, -4, -20, 15, 6, -7, 0, 1, -3, -7, 30, -10, -30, 21, 7, -8, 0, 1, 5, -16, -15, 60, -20, -42, 28, 8, -9, 0, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
---------------------------------------------
0: 1
1: 0 1
2: -1 0 1
3: 1 -2 0 1
4: 1 2 -3 0 1
5: -2 3 3 -4 0 1
6: 0 -6 6 4 -5 0 1
7: 3 -1 -12 10 5 -6 0 1
8: -2 12 -4 -20 15 6 -7 0 1
9: -3 -7 30 -10 -30 21 7 -8 0 1
10: 5 -16 -15 60 -20 -42 28 8 -9 0 1
...
Cayley-Hamilton formula for the matrix TS(x) =[[x,-1,1], [1,0,0], [0,1,0]] with Det(TS(x)) = +1, sigma(3, 2) = +1, and Tr(TS(x)) = x. For n = 3: TS(x)^3 = R(1, x)*TS(x)^2 + (-R(0, x) + R(-1, x))*TS(x) + R(0, x)*1_3 = x*TS(x)^2 - TS(x) + 1_3. Compare this for x = -1 with r^3 = R(3)*r^2 + (-R(2) + R(1))*r + R(2)*1 = r^2 - r + 1, where r = 1/t = A192918, with the tribonacci constant t = A058265, and R(n) = A057597(n) = R(n-2, -1).
Recurrence: T(5, 2) = T(4, 1) - T(3, 2) + T(2, 2) = 1 -(-1) + 1 = 3.
Boas-Buck type recurrence with B = {0, -2, 3, ...}:
T(5, 2) = ((2+1)/(5-2))*(3*1 + (-2)*0 + 0*(-3)) = 1*3 = 3.
Z- and A-recurrence with A(n) = {1, 0, -1, 1, -1, ...} and Z(n) = A(n+1):
T(4, 0) = 0*T(3, 0) - 1*T(3, 1) + 1*T(3, 2) - 1*T(3, 3) = 0 + 2 + 0 - 1 = 1.
T(5, 2) = 1*T(4, 1) + 0*T(4, 2) - 1*T(4, 3) + 1*T(4, 4) = 2 + 0 + 0 + 1 = 3.
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] - T[n - 2, k] + T[n - 3, k]; T[0, 0] = 1; T[, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jul 06 2019 *)
-
# uses[riordan_array from A256893]
riordan_array(1/(1 + x^2 - x^3), x/(1 + x^2 - x^3), 11) # Peter Luschny, Nov 13 2018
Showing 1-5 of 5 results.
Comments