cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 107 results. Next

A340566 Square array, read by descending antidiagonals; T(n,k) is A001057(n) + A001057(k)*i, converted to complex binary (base -1 + i), where i=sqrt(-1).

Original entry on oeis.org

0, 11, 1, 111, 1110, 11101, 1110100, 111010, 10, 1100, 100, 1110101, 110, 1111, 11100, 1110111, 101, 11001, 111011, 11111, 1101, 110011, 1010, 11101001, 1000, 11101011, 111010010, 10001, 1110000, 111110, 1110110, 111000, 11000, 111010110, 11110, 111010000
Offset: 0

Views

Author

Davis Smith, Jan 11 2021

Keywords

Comments

Complex binary (base -1 + i) has the ability to express all positive or negative, real or complex, integers with only 2 numerical symbols ('0' and '1') as integers, without the need for a sign marking the integers as such.
Converting a real number, n, to complex binary requires one to convert it to base -4 ((n + N) xor N, N = floor(4/5*16^(ceiling(log_4(abs(n))) + 1))), then adding 10 to every digit greater than 1, then treating it as a number in base 16 and converting that to binary. (E.g., -5 => [2,3] => [12,13] => 205 => 11001101.)
Converting a complex number, n + k*i, requires one to convert X = n + k into complex binary and then convert k into the same but shift it one digit to the left. After this, one must add them together. This functions much the same way as binary addition, but the carry is '110' rather than '1' and 11 + 111 = 0.

Examples

			Square array T(n,k) begins:
  \k      0         1         2          3        4       5        6 ...
  n\
   0|     0        11       111    1110100      100 1110111   110011 ...
   1|     1      1110    111010    1110101      101    1010   111110 ...
   2| 11101        10       110      11001 11101001 1110110   110010 ...
   3|  1100      1111    111011       1000   111000    1011   111111 ...
   4| 11100     11111  11101011      11000 11101000   11011 11101111 ...
   5|  1101 111010010 111010110       1001   111001 1100110   100010 ...
   6| 10001     11110  11101010 1110100101    10101   11010 11101110 ...
		

References

  • T. Jamil, Complex Binary Number System, Springer, 2013.

Crossrefs

Programs

  • PARI
    A340566(n,k)={my(A001057(x)=if(x%2,x\2+1,-x/2),V=vecsum(Vec(matconcat(apply(w->my(Y=if(w,A001057(k), A001057(n)+A001057(k)));if(Y, my(X=floor(4^(2*logint(abs(Y), 4)+5)/5));Vecrev(binary(shift(fromdigits(apply(z->z+(10*(z>1)), digits(bitxor(Y+X,X),4)),16),w)))),[0,1])~)~))~);
    while(vecmax(V)>1,my(Z=Vec(select(x->x>1,V,1)));for(x=1,#Z,my(z=Z[x]);if(V[z]<=1,,(z+2<=#V)&&(V[z+1]>1)&&V[z+2],for(j=z,z+2,V[j]-=2^(j!=(z+2))),(z+4<=#V)&&vecmin(V[z+2..z+4]),V[z]-=2;for(j=z+2,z+4,V[j]-=1),z+1>#V,V[z]-=2;V=concat(V,[0,1,1]),V[z]-=2;for(j=z+2,z+3,if(j<=#V,V[j]+=1,V=concat(V,1))))));fromdigits(Vecrev(V))}
    
  • PARI
    { T(n,k) = my(z=n\/2*-(-1)^n + k\/2*-(-1)^k*I, ret=List([]));
      while(z, my(bit=(real(z)+imag(z))%2);
        listput(ret,bit); z=(z-bit)/(I-1));
      fromdigits(Vecrev(ret)); } \\ Kevin Ryde, Jan 12 2021

A354522 Square array A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = g(f(n) + f(k)) where f denotes A001057 and g denotes its inverse.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 0, 0, 3, 4, 5, 4, 5, 4, 5, 2, 1, 1, 2, 5, 6, 7, 6, 7, 6, 7, 6, 7, 4, 3, 0, 0, 3, 4, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 6, 5, 2, 1, 1, 2, 5, 6, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 8, 7, 4, 3, 0, 0, 3, 4, 7, 8, 11, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12
Offset: 0

Views

Author

Rémy Sigrist, Sep 14 2022

Keywords

Comments

This sequence is directly related to A355278.
The function f is a bijection from the nonnegative integers to the integers (Z).
The nonnegative integers, together with (x,y) -> A(x,y), form an abelian group isomorph to the additive group Z (f and g act as isomorphisms).
As a consequence, each row and each column is a permutation of the nonnegative integers.

Examples

			Array A(n, k) begins:
  n\k |  0   1   2   3   4   5   6   7   8   9  10  11  12
  ----+---------------------------------------------------
    0 |  0   1   2   3   4   5   6   7   8   9  10  11  12
    1 |  1   3   0   5   2   7   4   9   6  11   8  13  10
    2 |  2   0   4   1   6   3   8   5  10   7  12   9  14
    3 |  3   5   1   7   0   9   2  11   4  13   6  15   8
    4 |  4   2   6   0   8   1  10   3  12   5  14   7  16
    5 |  5   7   3   9   1  11   0  13   2  15   4  17   6
    6 |  6   4   8   2  10   0  12   1  14   3  16   5  18
    7 |  7   9   5  11   3  13   1  15   0  17   2  19   4
    8 |  8   6  10   4  12   2  14   0  16   1  18   3  20
    9 |  9  11   7  13   5  15   3  17   1  19   0  21   2
   10 | 10   8  12   6  14   4  16   2  18   0  20   1  22
   11 | 11  13   9  15   7  17   5  19   3  21   1  23   0
   12 | 12  10  14   8  16   6  18   4  20   2  22   0  24
		

Crossrefs

Programs

  • PARI
    f(n) = - (-1)^n * ((n+1)\2)
    g(n) = if (n<=0, -2*n, 2*n-1)
    A(n, k) = g(f(n) + f(k))

Formula

A355278(n+1, k+1) = prime(1 + A(n, k)) (where prime(m) denotes the m-th prime number).
A(n, k) = A(k, n).
A(n, 0) = n.
A(n, A014681(n)) = 0.
A(m, A(n, k)) = A(A(m, n), k).
A(n, n) = A014601(n).
A(n, A(n, n)) = A047264(n+1).
A(A(n, n), A(n, n)) = A047521(n+1).

A376917 Starting from Goldbach decomposition of 10 = p + q = 5 + 5, 12 = 7 + 5, and 14 = 7 + 7, a(n) is the first number in A001057 such that if 2n - 6 = p + q, 2n = p' + q', where p' = p + 6 * a(n) and q' = 2n - q' are both primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, -1, 1, 1, 0, 1, -1, 0, 1, 0, 1, -1, 0, 2, 0, 0, 0, 0, 1, 1, 0, -1, 1, 1, 1, -2, -1, -1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 1, 1, 0, 1, -1, 0, -2, 0, 1, 0, 0, 2, 0, 1, 0, 1, 2, 1, 1, 0, 1, -2, 1, -2, 1, 1, 0, 1, 1, 1, -1, 2, 1, 1
Offset: 8

Views

Author

Lei Zhou, Oct 09 2024

Keywords

Comments

By definition, this sequence starts from n = 8.
Hypothesis: a(n) is defined for all n >= 8 and for all n >=8, the corresponding Goldbach decomposition 2n = p + q has positive primes p and q.

Examples

			When n = 8, 2n = 16.  2n - 6 = 10. 10 = p + q = 5 + 5 (by definition). a(8) = 0, p' = p + a(8) = 5, q' = 2n - p' = 16 - 5 = 11. P' and q' are both primes.
...
When n = 10, 2n = 20. 2n - 6 = 14. 14 = p + q = 7 + 7 (by definition). a(10) = 0, p' = p + a(10) = 7, q' = 2n - p' = 20 - 7 = 13. P' and q' are both primes.
...
When n = 13, 2n = 26. 2n - 6 = 20. 20 = p + q = 7 + 13 (per above evaluation). a(13) = 0, p' = p + a(13) = 7, q' = 2n - p' = 26 - 7 = 19. P' and q' are both primes.
When n = 16, 2n = 32. 2n - 6 = 26. 26 = p + q = 7 + 19 (per above evaluation). a(16) = 1, p' = p + a(16) = 13, q' = 2n - p' = 32 - 13 = 19. P' and q' are both primes. It is tested when a(16) is 0, q' = 25 is not a prime, thus a(16) = 1 is the first number in A001057 that makes both p' and q' primes.
		

Crossrefs

Ref. A001057; Cf. A045917

Programs

  • Mathematica
    a = {}; p = {5, 7, 7}; Do[Do[n = 6*k - 4 + 2*j; i = 0; While[i++; m = 1/4 + (i - 1/2)*(-1)^i/2; pr = p[[j]] + 6*m; q = n - pr; ! (PrimeQ[pr] && PrimeQ[q])]; p[[j]] = pr; AppendTo[a, m], {j, 1, 3}], {k, 3, 30}]; Print[a]

A000027 The positive integers. Also called the natural numbers, the whole numbers or the counting numbers, but these terms are ambiguous.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

For some authors, the terms "natural numbers" and "counting numbers" include 0, i.e., refer to the nonnegative integers A001477; the term "whole numbers" frequently also designates the whole set of (signed) integers A001057.
a(n) is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = n (cf. A007378).
Inverse Euler transform of A000219.
The rectangular array having A000027 as antidiagonals is the dispersion of the complement of the triangular numbers, A000217 (which triangularly form column 1 of this array). The array is also the transpose of A038722. - Clark Kimberling, Apr 05 2003
For nonzero x, define f(n) = floor(nx) - floor(n/x). Then f=A000027 if and only if x=tau or x=-tau. - Clark Kimberling, Jan 09 2005
Numbers of form (2^i)*k for odd k (i.e., n = A006519(n)*A000265(n)); thus n corresponds uniquely to an ordered pair (i,k) where i=A007814, k=A000265 (with A007814(2n)=A001511(n), A007814(2n+1)=0). - Lekraj Beedassy, Apr 22 2006
If the offset were changed to 0, we would have the following pattern: a(n)=binomial(n,0) + binomial(n,1) for the present sequence (number of regions in 1-space defined by n points), A000124 (number of regions in 2-space defined by n straight lines), A000125 (number of regions in 3-space defined by n planes), A000127 (number of regions in 4-space defined by n hyperplanes), A006261, A008859, A008860, A008861, A008862 and A008863, where the last six sequences are interpreted analogously and in each "... by n ..." clause an offset of 0 has been assumed, resulting in a(0)=1 for all of them, which corresponds to the case of not cutting with a hyperplane at all and therefore having one region. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Define a number of points on a straight line to be in general arrangement when no two points coincide. Then these are the numbers of regions defined by n points in general arrangement on a straight line, when an offset of 0 is assumed. For instance, a(0)=1, since using no point at all leaves one region. The sequence satisfies the recursion a(n) = a(n-1) + 1. This has the following geometrical interpretation: Suppose there are already n-1 points in general arrangement, thus defining the maximal number of regions on a straight line obtainable by n-1 points, and now one more point is added in general arrangement. Then it will coincide with no other point and act as a dividing wall thereby creating one new region in addition to the a(n-1)=(n-1)+1=n regions already there, hence a(n)=a(n-1)+1. Cf. the comments on A000124 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
The sequence a(n)=n (for n=1,2,3) and a(n)=n+1 (for n=4,5,...) gives to the rank (minimal cardinality of a generating set) for the semigroup I_n\S_n, where I_n and S_n denote the symmetric inverse semigroup and symmetric group on [n]. - James East, May 03 2007
The sequence a(n)=n (for n=1,2), a(n)=n+1 (for n=3) and a(n)=n+2 (for n=4,5,...) gives the rank (minimal cardinality of a generating set) for the semigroup PT_n\T_n, where PT_n and T_n denote the partial transformation semigroup and transformation semigroup on [n]. - James East, May 03 2007
"God made the integers; all else is the work of man." This famous quotation is a translation of "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk," spoken by Leopold Kronecker in a lecture at the Berliner Naturforscher-Versammlung in 1886. Possibly the first publication of the statement is in Heinrich Weber's "Leopold Kronecker," Jahresberichte D.M.V. 2 (1893) 5-31. - Clark Kimberling, Jul 07 2007
Binomial transform of A019590, inverse binomial transform of A001792. - Philippe Deléham, Oct 24 2007
Writing A000027 as N, perhaps the simplest one-to-one correspondence between N X N and N is this: f(m,n) = ((m+n)^2 - m - 3n + 2)/2. Its inverse is given by I(k)=(g,h), where g = k - J(J-1)/2, h = J + 1 - g, J = floor((1 + sqrt(8k - 7))/2). Thus I(1)=(1,1), I(2)=(1,2), I(3)=(2,1) and so on; the mapping I fills the first-quadrant lattice by successive antidiagonals. - Clark Kimberling, Sep 11 2008
a(n) is also the mean of the first n odd integers. - Ian Kent, Dec 23 2008
Equals INVERTi transform of A001906, the even-indexed Fibonacci numbers starting (1, 3, 8, 21, 55, ...). - Gary W. Adamson, Jun 05 2009
These are also the 2-rough numbers: positive integers that have no prime factors less than 2. - Michael B. Porter, Oct 08 2009
Totally multiplicative sequence with a(p) = p for prime p. Totally multiplicative sequence with a(p) = a(p-1) + 1 for prime p. - Jaroslav Krizek, Oct 18 2009
Triangle T(k,j) of natural numbers, read by rows, with T(k,j) = binomial(k,2) + j = (k^2-k)/2 + j where 1 <= j <= k. In other words, a(n) = n = binomial(k,2) + j where k is the largest integer such that binomial(k,2) < n and j = n - binomial(k,2). For example, T(4,1)=7, T(4,2)=8, T(4,3)=9, and T(4,4)=10. Note that T(n,n)=A000217(n), the n-th triangular number. - Dennis P. Walsh, Nov 19 2009
Hofstadter-Conway-like sequence (see A004001): a(n) = a(a(n-1)) + a(n-a(n-1)) with a(1) = 1, a(2) = 2. - Jaroslav Krizek, Dec 11 2009
a(n) is also the dimension of the irreducible representations of the Lie algebra sl(2). - Leonid Bedratyuk, Jan 04 2010
Floyd's triangle read by rows. - Paul Muljadi, Jan 25 2010
Number of numbers between k and 2k where k is an integer. - Giovanni Teofilatto, Mar 26 2010
Generated from a(2n) = r*a(n), a(2n+1) = a(n) + a(n+1), r = 2; in an infinite set, row 2 of the array shown in A178568. - Gary W. Adamson, May 29 2010
1/n = continued fraction [n]. Let barover[n] = [n,n,n,...] = 1/k. Then k - 1/k = n. Example: [2,2,2,...] = (sqrt(2) - 1) = 1/k, with k = (sqrt(2) + 1). Then 2 = k - 1/k. - Gary W. Adamson, Jul 15 2010
Number of n-digit numbers the binary expansion of which contains one run of 1's. - Vladimir Shevelev, Jul 30 2010
From Clark Kimberling, Jan 29 2011: (Start)
Let T denote the "natural number array A000027":
1 2 4 7 ...
3 5 8 12 ...
6 9 13 18 ...
10 14 19 25 ...
T(n,k) = n+(n+k-2)*(n+k-1)/2. See A185787 for a list of sequences based on T, such as rows, columns, diagonals, and sub-arrays. (End)
The Stern polynomial B(n,x) evaluated at x=2. See A125184. - T. D. Noe, Feb 28 2011
The denominator in the Maclaurin series of log(2), which is 1 - 1/2 + 1/3 - 1/4 + .... - Mohammad K. Azarian, Oct 13 2011
As a function of Bernoulli numbers B_n (cf. A027641: (1, -1/2, 1/6, 0, -1/30, 0, 1/42, ...)): let V = a variant of B_n changing the (-1/2) to (1/2). Then triangle A074909 (the beheaded Pascal's triangle) * [1, 1/2, 1/6, 0, -1/30, ...] = the vector [1, 2, 3, 4, 5, ...]. - Gary W. Adamson, Mar 05 2012
Number of partitions of 2n+1 into exactly two parts. - Wesley Ivan Hurt, Jul 15 2013
Integers n dividing u(n) = 2u(n-1) - u(n-2); u(0)=0, u(1)=1 (Lucas sequence A001477). - Thomas M. Bridge, Nov 03 2013
For this sequence, the generalized continued fraction a(1)+a(1)/(a(2)+a(2)/(a(3)+a(3)/(a(4)+...))), evaluates to 1/(e-2) = A194807. - Stanislav Sykora, Jan 20 2014
Engel expansion of e-1 (A091131 = 1.71828...). - Jaroslav Krizek, Jan 23 2014
a(n) is the number of permutations of length n simultaneously avoiding 213, 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
a(n) is also the number of permutations simultaneously avoiding 213, 231 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n) = least k such that 2*Pi - Sum_{h=1..k} 1/(h^2 - h + 3/16) < 1/n. - Clark Kimberling, Sep 28 2014
a(n) = least k such that Pi^2/6 - Sum_{h=1..k} 1/h^2 < 1/n. - Clark Kimberling, Oct 02 2014
Determinants of the spiral knots S(2,k,(1)). a(k) = det(S(2,k,(1))). These knots are also the torus knots T(2,k). - Ryan Stees, Dec 15 2014
As a function, the restriction of the identity map on the nonnegative integers {0,1,2,3...}, A001477, to the positive integers {1,2,3,...}. - M. F. Hasler, Jan 18 2015
See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=1, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015
a(n) is the number of compositions of n+2 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Parametrization for the finite multisubsets of the positive integers, where, for p_j the j-th prime, n = Product_{j} p_j^(e_j) corresponds to the multiset containing e_j copies of j ('Heinz encoding' -- see A056239, A003963, A289506, A289507, A289508, A289509). - Christopher J. Smyth, Jul 31 2017
The arithmetic function v_1(n,1) as defined in A289197. - Robert Price, Aug 22 2017
For n >= 3, a(n)=n is the least area that can be obtained for an irregular octagon drawn in a square of n units side, whose sides are parallel to the axes, with 4 vertices that coincide with the 4 vertices of the square, and the 4 remaining vertices having integer coordinates. See Affaire de Logique link. - Michel Marcus, Apr 28 2018
a(n+1) is the order of rowmotion on a poset defined by a disjoint union of chains of length n. - Nick Mayers, Jun 08 2018
Number of 1's in n-th generation of 1-D Cellular Automata using Rules 50, 58, 114, 122, 178, 186, 206, 220, 238, 242, 250 or 252 in the Wolfram numbering scheme, started with a single 1. - Frank Hollstein, Mar 25 2019
(1, 2, 3, 4, 5, ...) is the fourth INVERT transform of (1, -2, 3, -4, 5, ...). - Gary W. Adamson, Jul 15 2019

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 1.
  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 25.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 22.
  • W. Fulton and J. Harris, Representation theory: a first course, (1991), page 149. [From Leonid Bedratyuk, Jan 04 2010]
  • I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
  • R. E. Schwartz, You Can Count on Monsters: The First 100 numbers and Their Characters, A. K. Peters and MAA, 2010.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001477 = nonnegative numbers.
Partial sums of A000012.
Cf. A026081 = integers in reverse alphabetical order in U.S. English, A107322 = English name for number and its reverse have the same number of letters, A119796 = zero through ten in alphabetical order of English reverse spelling, A005589, etc. Cf. A185787 (includes a list of sequences based on the natural number array A000027).
Cf. Boustrophedon transforms: A000737, A231179;
Cf. A038722 (mirrored when seen as triangle), A056011 (boustrophedon).
Cf. A048993, A048994, A000110 (see the Feb 03 2015 formula).

Programs

Formula

a(2k+1) = A005408(k), k >= 0, a(2k) = A005843(k), k >= 1.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
Another g.f.: Sum_{n>0} phi(n)*x^n/(1-x^n) (Apostol).
When seen as an array: T(k, n) = n+1 + (k+n)*(k+n+1)/2. Main diagonal is 2n*(n+1)+1 (A001844), antidiagonal sums are n*(n^2+1)/2 (A006003). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
G.f.: x/(1-x)^2. E.g.f.: x*exp(x). a(n)=n. a(-n)=-a(n).
Series reversion of g.f. A(x) is x*C(-x)^2 where C(x) is the g.f. of A000108. - Michael Somos, Sep 04 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 4*u*v. - Michael Somos, Oct 03 2006
Convolution of A000012 (the all-ones sequence) with itself. - Tanya Khovanova, Jun 22 2007
a(n) = 2*a(n-1)-a(n-2); a(1)=1, a(2)=2. a(n) = 1+a(n-1). - Philippe Deléham, Nov 03 2008
a(n) = A000720(A000040(n)). - Juri-Stepan Gerasimov, Nov 29 2009
a(n+1) = Sum_{k=0..n} A101950(n,k). - Philippe Deléham, Feb 10 2012
a(n) = Sum_{d | n} phi(d) = Sum_{d | n} A000010(d). - Jaroslav Krizek, Apr 20 2012
G.f.: x * Product_{j>=0} (1+x^(2^j))^2 = x * (1+2*x+x^2) * (1+2*x^2+x^4) * (1+2*x^4+x^8) * ... = x + 2x^2 + 3x^3 + ... . - Gary W. Adamson, Jun 26 2012
a(n) = det(binomial(i+1,j), 1 <= i,j <= n). - Mircea Merca, Apr 06 2013
E.g.f.: x*E(0), where E(k) = 1 + 1/(x - x^3/(x^2 + (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013
From Wolfdieter Lang, Oct 09 2013: (Start)
a(n) = Product_{k=1..n-1} 2*sin(Pi*k/n), n > 1.
a(n) = Product_{k=1..n-1} (2*sin(Pi*k/(2*n)))^2, n > 1.
These identities are used in the calculation of products of ratios of lengths of certain lines in a regular n-gon. For the first identity see the Gradstein-Ryshik reference, p. 62, 1.392 1., bringing the first factor there to the left hand side and taking the limit x -> 0 (L'Hôpital). The second line follows from the first one. Thanks to Seppo Mustonen who led me to consider n-gon lengths products. (End)
a(n) = Sum_{j=0..k} (-1)^(j-1)*j*binomial(n,j)*binomial(n-1+k-j,k-j), k>=0. - Mircea Merca, Jan 25 2014
a(n) = A052410(n)^A052409(n). - Reinhard Zumkeller, Apr 06 2014
a(n) = Sum_{k=1..n^2+2*n} 1/(sqrt(k)+sqrt(k+1)). - Pierre CAMI, Apr 25 2014
a(n) = floor(1/sin(1/n)) = floor(cot(1/(n+1))) = ceiling(cot(1/n)). - Clark Kimberling, Oct 08 2014
a(n) = floor(1/(log(n+1)-log(n))). - Thomas Ordowski, Oct 10 2014
a(k) = det(S(2,k,1)). - Ryan Stees, Dec 15 2014
a(n) = 1/(1/(n+1) + 1/(n+1)^2 + 1/(n+1)^3 + ...). - Pierre CAMI, Jan 22 2015
a(n) = Sum_{m=0..n-1} Stirling1(n-1,m)*Bell(m+1), for n >= 1. This corresponds to Bell(m+1) = Sum_{k=0..m} Stirling2(m, k)*(k+1), for m >= 0, from the fact that Stirling2*Stirling1 = identity matrix. See A048993, A048994 and A000110. - Wolfdieter Lang, Feb 03 2015
a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k*(2n-k). In addition, surprisingly, a(n) = Sum_{k=1..2n-1}(-1)^(k+1)*k^2*(2n-k)^2. - Charlie Marion, Jan 05 2016
G.f.: x/(1-x)^2 = (x * r(x) *r(x^3) * r(x^9) * r(x^27) * ...), where r(x) = (1 + x + x^2)^2 = (1 + 2x + 3x^2 + 2x^3 + x^4). - Gary W. Adamson, Jan 11 2017
a(n) = floor(1/(Pi/2-arctan(n))). - Clark Kimberling, Mar 11 2020
a(n) = Sum_{d|n} mu(n/d)*sigma(d). - Ridouane Oudra, Oct 03 2020
a(n) = Sum_{k=1..n} phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021
a(n) = S(n-1, 2), with the Chebyshev S-polynomials A049310. - Wolfdieter Lang, Mar 09 2023
From Peter Bala, Nov 02 2024: (Start)
For positive integer m, a(n) = (1/m)* Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k * (2*m*n - k) = (1/m) * Sum_{k = 1..2*m*n-1} (-1)^(k+1) * k^2 * (2*m*n - k)^2 (the case m = 1 is given above).
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * k * binomial(3*n+k, 2*k). (End)

Extensions

Links edited by Daniel Forgues, Oct 07 2009.

A001477 The nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0

Views

Author

Keywords

Comments

Although this is a list, and lists normally have offset 1, it seems better to make an exception in this case. - N. J. A. Sloane, Mar 13 2010
The subsequence 0,1,2,3,4 gives the known values of n such that 2^(2^n)+1 is a prime (see A019434, the Fermat primes). - N. J. A. Sloane, Jun 16 2010
Also: The identity map, defined on the set of nonnegative integers. The restriction to the positive integers yields the sequence A000027. - M. F. Hasler, Nov 20 2013
The number of partitions of 2n into exactly 2 parts. - Colin Barker, Mar 22 2015
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 8960 or 168.- Philippe A.J.G. Chevalier, Dec 29 2015
Partial sums give A000217. - Omar E. Pol, Jul 26 2018
First differences are A000012 (the "all 1's" sequence). - M. F. Hasler, May 30 2020
See A061579 for the transposed infinite square matrix, or triangle with rows reversed. - M. F. Hasler, Nov 09 2021
This is the unique sequence (a(n)) that satisfies the inequality a(n+1) > a(a(n)) for all n in N. This simple and surprising result comes from the 6th problem proposed by Bulgaria during the second day of the 19th IMO (1977) in Belgrade (see link and reference). - Bernard Schott, Jan 25 2023

Examples

			Triangular view:
   0
   1   2
   3   4   5
   6   7   8   9
  10  11  12  13  14
  15  16  17  18  19  20
  21  22  23  24  25  26  27
  28  29  30  31  32  33  34  35
  36  37  38  39  40  41  42  43  44
  45  46  47  48  49  50  51  52  53  54
		

References

  • Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.

Crossrefs

Cf. A000027 (n>=1).
Cf. A000012 (first differences).
Partial sums of A057427. - Jeremy Gardiner, Sep 08 2002
Cf. A038608 (alternating signs), A001787 (binomial transform).
Cf. A055112.
Cf. Boustrophedon transforms: A231179, A000737.
Cf. A245422.
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A000217.
When written as an array, the rows/columns are A000217, A000124, A152948, A152950, A145018, A167499, A166136, A167487... and A000096, A034856, A055998, A046691, A052905, A055999... (with appropriate offsets); cf. analogous lists for A000027 in A185787.
Cf. A000290.
Cf. A061579 (transposed matrix / reversed triangle).

Programs

Formula

a(n) = n.
a(0) = 0, a(n) = a(n-1) + 1.
G.f.: x/(1-x)^2.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
When seen as array: T(k, n) = n + (k+n)*(k+n+1)/2. Main diagonal is 2*n*(n+1) (A046092), antidiagonal sums are n*(n+1)*(n+2)/2 (A027480). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: x*e^x. - Franklin T. Adams-Watters, Sep 11 2005
a(0)=0, a(1)=1, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
Alternating partial sums give A001057 = A000217 - 2*(A008794). - Eric Desbiaux, Oct 28 2008
a(n) = 2*A080425(n) + 3*A008611(n-3), n>1. - Eric Desbiaux, Nov 15 2009
a(n) = A007966(n)*A007967(n). - Reinhard Zumkeller, Jun 18 2011
a(n) = Sum_{k>=0} A030308(n,k)*2^k. - Philippe Deléham, Oct 20 2011
a(n) = 2*A028242(n-1) + (-1)^n*A000034(n-1). - R. J. Mathar, Jul 20 2012
a(n+1) = det(C(i+1,j), 1 <= i, j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n-1) = floor(n/e^(1/n)) for n > 0. - Richard R. Forberg, Jun 22 2013
a(n) = A000027(n) for all n>0.
a(n) = floor(cot(1/(n+1))). - Clark Kimberling, Oct 08 2014
a(0)=0, a(n>0) = 2*z(-1)^[( |z|/z + 3 )/2] + ( |z|/z - 1 )/2 for z = A130472(n>0); a 1 to 1 correspondence between integers and naturals. - Adriano Caroli, Mar 29 2015
G.f. as triangle: x*(1 + (x^2 - 5*x + 2)*y + x*(2*x - 1)*y^2)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 22 2025

A004526 Nonnegative integers repeated, floor(n/2).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36
Offset: 0

Views

Author

Keywords

Comments

Number of elements in the set {k: 1 <= 2k <= n}.
Dimension of the space of weight 2n+4 cusp forms for Gamma_0(2).
Dimension of the space of weight 1 modular forms for Gamma_1(n+1).
Number of ways 2^n is expressible as r^2 - s^2 with s > 0. Proof: (r+s) and (r-s) both should be powers of 2, even and distinct hence a(2k) = a(2k-1) = (k-1) etc. - Amarnath Murthy, Sep 20 2002
Lengths of sides of Ulam square spiral; i.e., lengths of runs of equal terms in A063826. - Donald S. McDonald, Jan 09 2003
Number of partitions of n into two parts. A008619 gives partitions of n into at most two parts, so A008619(n) = a(n) + 1 for all n >= 0. Partial sums are A002620 (Quarter-squares). - Rick L. Shepherd, Feb 27 2004
a(n+1) is the number of 1's in the binary expansion of the Jacobsthal number A001045(n). - Paul Barry, Jan 13 2005
Number of partitions of n+1 into two distinct (nonzero) parts. Example: a(8) = 4 because we have [8,1],[7,2],[6,3] and [5,4]. - Emeric Deutsch, Apr 14 2006
Complement of A000035, since A000035(n)+2*a(n) = n. Also equal to the partial sums of A000035. - Hieronymus Fischer, Jun 01 2007
Number of binary bracelets of n beads, two of them 0. For n >= 2, a(n-2) is the number of binary bracelets of n beads, two of them 0, with 00 prohibited. - Washington Bomfim, Aug 27 2008
Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 2, A[i,i]:=1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n+1) = (-1)^n det(A). - Milan Janjic, Jan 24 2010
From Clark Kimberling, Mar 10 2011: (Start)
Let RT abbreviate rank transform (A187224). Then
RT(this sequence) = A187484;
RT(this sequence without 1st term) = A026371;
RT(this sequence without 1st 2 terms) = A026367;
RT(this sequence without 1st 3 terms) = A026363. (End)
The diameter (longest path) of the n-cycle. - Cade Herron, Apr 14 2011
For n >= 3, a(n-1) is the number of two-color bracelets of n beads, three of them are black, having a diameter of symmetry. - Vladimir Shevelev, May 03 2011
Pelesko (2004) refers erroneously to this sequence instead of A008619. - M. F. Hasler, Jul 19 2012
Number of degree 2 irreducible characters of the dihedral group of order 2(n+1). - Eric M. Schmidt, Feb 12 2013
For n >= 3 the sequence a(n-1) is the number of non-congruent regions with infinite area in the exterior of a regular n-gon with all diagonals drawn. See A217748. - Martin Renner, Mar 23 2013
a(n) is the number of partitions of 2n into exactly 2 even parts. a(n+1) is the number of partitions of 2n into exactly 2 odd parts. This just rephrases the comment of E. Deutsch above. - Wesley Ivan Hurt, Jun 08 2013
Number of the distinct rectangles and square in a regular n-gon is a(n/2) for even n and n >= 4. For odd n, such number is zero, see illustration in link. - Kival Ngaokrajang, Jun 25 2013
x-coordinate from the image of the point (0,-1) after n reflections across the lines y = n and y = x respectively (alternating so that one reflection is applied on each step): (0,-1) -> (0,1) -> (1,0) -> (1,2) -> (2,1) -> (2,3) -> ... . - Wesley Ivan Hurt, Jul 12 2013
a(n) is the number of partitions of 2n into exactly two distinct odd parts. a(n-1) is the number of partitions of 2n into exactly two distinct even parts, n > 0. - Wesley Ivan Hurt, Jul 21 2013
a(n) is the number of permutations of length n avoiding 213, 231 and 312, or avoiding 213, 312 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Also a(n) is the number of different patterns of 2-color, 2-partition of n. - Ctibor O. Zizka, Nov 19 2014
Minimum in- and out-degree for a directed K_n (see link). - Jon Perry, Nov 22 2014
a(n) is also the independence number of the triangular graph T(n). - Luis Manuel Rivera Martínez, Mar 12 2015
For n >= 3, a(n+4) is the least positive integer m such that every m-element subset of {1,2,...,n} contains distinct i, j, k with i + j = k (equivalently, with i - j = k). - Rick L. Shepherd, Jan 24 2016
More generally, the ordinary generating function for the integers repeated k times is x^k/((1 - x)(1 - x^k)). - Ilya Gutkovskiy, Mar 21 2016
a(n) is the number of numbers of the form F(i)*F(j) between F(n+3) and F(n+4), where 2 < i < j and F = A000045 (Fibonacci numbers). - Clark Kimberling, May 02 2016
The arithmetic function v_2(n,2) as defined in A289187. - Robert Price, Aug 22 2017
a(n) is also the total domination number of the (n-3)-gear graph. - Eric W. Weisstein, Apr 07 2018
Consider the numbers 1, 2, ..., n; a(n) is the largest integer t such that these numbers can be arranged in a row so that all consecutive terms differ by at least t. Example: a(6) = a(7) = 3, because of respectively (4, 1, 5, 2, 6, 3) and (1, 5, 2, 6, 3, 7, 4) (see link BMO - Problem 2). - Bernard Schott, Mar 07 2020
a(n-1) is also the number of integer-sided triangles whose sides a < b < c are in arithmetic progression with a middle side b = n (see A307136). Example, for b = 4, there exists a(3) = 1 such triangle corresponding to Pythagorean triple (3, 4, 5). For the triples, miscellaneous properties and references, see A336750. - Bernard Schott, Oct 15 2020
For n >= 1, a(n-1) is the greatest remainder on division of n by any k in 1..n. - David James Sycamore, Sep 05 2021
Number of incongruent right triangles that can be formed from the vertices of a regular n-gon is given by a(n/2) for n even. For n odd such number is zero. For a regular n-gon, the number of incongruent triangles formed from its vertices is given by A069905(n). The number of incongruent acute triangles is given by A005044(n). The number of incongruent obtuse triangles is given by A008642(n-4) for n > 3 otherwise 0, with offset 0. - Frank M Jackson, Nov 26 2022
The inverse binomial transform is 0, 0, 1, -2, 4, -8, 16, -32, ... (see A122803). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ...
		

References

  • G. L. Alexanderson et al., The William Powell Putnam Mathematical Competition - Problems and Solutions: 1965-1984, M.A.A., 1985; see Problem A-1 of 27th Competition.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, P(n,2).
  • Graham, Knuth and Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1989, page 77 (partitions of n into at most 2 parts).

Crossrefs

a(n+2) = A008619(n). See A008619 for more references.
A001477(n) = a(n+1)+a(n). A000035(n) = a(n+1)-A002456(n).
a(n) = A008284(n, 2), n >= 1.
Zero followed by the partial sums of A000035.
Column 2 of triangle A094953. Second row of A180969.
Partial sums: A002620. Other related sequences: A010872, A010873, A010874.
Cf. similar sequences of the integers repeated k times: A001477 (k = 1), this sequence (k = 2), A002264 (k = 3), A002265 (k = 4), A002266 (k = 5), A152467 (k = 6), A132270 (k = 7), A132292 (k = 8), A059995 (k = 10).
Cf. A289187, A139756 (binomial transf).

Programs

  • Haskell
    a004526 = (`div` 2)
    a004526_list = concatMap (\x -> [x, x]) [0..]
    -- Reinhard Zumkeller, Jul 27 2012
    
  • Magma
    [Floor(n/2): n in [0..100]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    A004526 := n->floor(n/2); seq(floor(i/2),i=0..50);
  • Mathematica
    Table[(2n - 1)/4 + (-1)^n/4, {n, 0, 70}] (* Stefan Steinerberger, Apr 02 2006 *)
    f[n_] := If[OddQ[n], (n - 1)/2, n/2]; Array[f, 74, 0] (* Robert G. Wilson v, Apr 20 2012 *)
    With[{c=Range[0,40]},Riffle[c,c]] (* Harvey P. Dale, Aug 26 2013 *)
    CoefficientList[Series[x^2/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)
    LinearRecurrence[{1, 1, -1}, {0, 0, 1}, 75] (* Robert G. Wilson v, Feb 05 2015 *)
    Floor[Range[0, 40]/2] (* Eric W. Weisstein, Apr 07 2018 *)
  • Maxima
    makelist(floor(n/2),n,0,50); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    a(n)=n\2 /* Jaume Oliver Lafont, Mar 25 2009 */
    
  • PARI
    x='x+O('x^100); concat([0, 0], Vec(x^2/((1+x)*(x-1)^2))) \\ Altug Alkan, Mar 21 2016
    
  • Python
    def a(n): return n//2
    print([a(n) for n in range(74)]) # Michael S. Branicky, Apr 30 2022
  • Sage
    def a(n) : return( dimension_cusp_forms( Gamma0(2), 2*n+4) ); # Michael Somos, Jul 03 2014
    
  • Sage
    def a(n) : return( dimension_modular_forms( Gamma1(n+1), 1) ); # Michael Somos, Jul 03 2014
    

Formula

G.f.: x^2/((1+x)*(x-1)^2).
a(n) = floor(n/2).
a(n) = ceiling((n+1)/2). - Eric W. Weisstein, Jan 11 2024
a(n) = 1 + a(n-2).
a(n) = a(n-1) + a(n-2) - a(n-3).
a(2*n) = a(2*n+1) = n.
a(n+1) = n - a(n). - Henry Bottomley, Jul 25 2001
For n > 0, a(n) = Sum_{i=1..n} (1/2)/cos(Pi*(2*i-(1-(-1)^n)/2)/(2*n+1)). - Benoit Cloitre, Oct 11 2002
a(n) = (2*n-1)/4 + (-1)^n/4; a(n+1) = Sum_{k=0..n} k*(-1)^(n+k). - Paul Barry, May 20 2003
E.g.f.: ((2*x-1)*exp(x) + exp(-x))/4. - Paul Barry, Sep 03 2003
G.f.: (1/(1-x)) * Sum_{k >= 0} t^2/(1-t^4) where t = x^2^k. - Ralf Stephan, Feb 24 2004
a(n+1) = A000120(A001045(n)). - Paul Barry, Jan 13 2005
a(n) = (n-(1-(-1)^n)/2)/2 = (1/2)*(n-|sin(n*Pi/2)|). Likewise: a(n) = (n-A000035(n))/2. Also: a(n) = Sum_{k=0..n} A000035(k). - Hieronymus Fischer, Jun 01 2007
The expression floor((x^2-1)/(2*x)) (x >= 1) produces this sequence. - Mohammad K. Azarian, Nov 08 2007; corrected by M. F. Hasler, Nov 17 2008
a(n+1) = A002378(n) - A035608(n). - Reinhard Zumkeller, Jan 27 2010
a(n+1) = A002620(n+1) - A002620(n) = floor((n+1)/2)*ceiling((n+1)/2) - floor(n^2/4). - Jonathan Vos Post, May 20 2010
For n >= 2, a(n) = floor(log_2(2^a(n-1) + 2^a(n-2))). - Vladimir Shevelev, Jun 22 2010
a(n) = A180969(2,n). - Adriano Caroli, Nov 24 2010
A001057(n-1) = (-1)^n*a(n), n > 0. - M. F. Hasler, Jul 19 2012
a(n) = A008615(n) + A002264(n). - Reinhard Zumkeller, Apr 28 2014
Euler transform of length 2 sequence [1, 1]. - Michael Somos, Jul 03 2014

Extensions

Partially edited by Joerg Arndt, Mar 11 2010, and M. F. Hasler, Jul 19 2012

A001318 Generalized pentagonal numbers: m*(3*m - 1)/2, m = 0, +-1, +-2, +-3, ....

Original entry on oeis.org

0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715, 737, 782, 805, 852, 876, 925, 950, 1001, 1027, 1080, 1107, 1162, 1190, 1247, 1276, 1335
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A026741. - Jud McCranie; corrected by Omar E. Pol, Jul 05 2012
From R. K. Guy, Dec 28 2005: (Start)
"Conway's relation twixt the triangular and pentagonal numbers: Divide the triangular numbers by 3 (when you can exactly):
0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 ...
0 - 1 2 .- .5 .7 .- 12 15 .- 22 26 .- .35 .40 .- ..51 ...
.....-.-.....+..+.....-..-.....+..+......-...-.......+....
"and you get the pentagonal numbers in pairs, one of positive rank and the other negative.
"Append signs according as the pair have the same (+) or opposite (-) parity.
"Then Euler's pentagonal number theorem is easy to remember:
"p(n-0) - p(n-1) - p(n-2) + p(n-5) + p(n-7) - p(n-12) - p(n-15) ++-- = 0^n
where p(n) is the partition function, the left side terminates before the argument becomes negative and 0^n = 1 if n = 0 and = 0 if n > 0.
"E.g. p(0) = 1, p(7) = p(7-1) + p(7-2) - p(7-5) - p(7-7) + 0^7 = 11 + 7 - 2 - 1 + 0 = 15."
(End)
The sequence may be used in order to compute sigma(n), as described in Euler's article. - Thomas Baruchel, Nov 19 2003
Number of levels in the partitions of n + 1 with parts in {1,2}.
a(n) is the number of 3 X 3 matrices (symmetrical about each diagonal) M = {{a, b, c}, {b, d, b}, {c, b, a}} such that a + b + c = b + d + b = n + 2, a,b,c,d natural numbers; example: a(3) = 5 because (a,b,c,d) = (2,2,1,1), (1,2,2,1), (1,1,3,3), (3,1,1,3), (2,1,2,3). - Philippe Deléham, Apr 11 2007
Also numbers a(n) such that 24*a(n) + 1 = (6*m - 1)^2 are odd squares: 1, 25, 49, 121, 169, 289, 361, ..., m = 0, +-1, +-2, ... . - Zak Seidov, Mar 08 2008
From Matthew Vandermast, Oct 28 2008: (Start)
Numbers n for which A000326(n) is a member of A000332. Cf. A145920.
This sequence contains all members of A000332 and all nonnegative members of A145919. For values of n such that n*(3*n - 1)/2 belongs to A000332, see A145919. (End)
Starting with offset 1 = row sums of triangle A168258. - Gary W. Adamson, Nov 21 2009
Starting with offset 1 = Triangle A101688 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 27 2009
Starting with offset 1 can be considered the first in an infinite set generated from A026741. Refer to the array in A175005. - Gary W. Adamson, Apr 03 2010
Vertex number of a square spiral whose edges have length A026741. The two axes of the spiral forming an "X" are A000326 and A005449. The four semi-axes forming an "X" are A049452, A049453, A033570 and the numbers >= 2 of A033568. - Omar E. Pol, Sep 08 2011
A general formula for the generalized k-gonal numbers is given by n*((k - 2)*n - k + 4)/2, n=0, +-1, +-2, ..., k >= 5. - Omar E. Pol, Sep 15 2011
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 2*w = 2*x + y. - Clark Kimberling, Jun 04 2012
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. - Omar E. Pol, Aug 04 2012
a(n) is the sum of the largest parts of the partitions of n+1 into exactly 2 parts. - Wesley Ivan Hurt, Jan 26 2013
Conway's relation mentioned by R. K. Guy is a relation between triangular numbers and generalized pentagonal numbers, two sequences from different families, but as triangular numbers are also generalized hexagonal numbers in this case we have a relation between two sequences from the same family. - Omar E. Pol, Feb 01 2013
Start with the sequence of all 0's. Add n to each value of a(n) and the next n - 1 terms. The result is the generalized pentagonal numbers. - Wesley Ivan Hurt, Nov 03 2014
(6k + 1) | a(4k). (3k + 1) | a(4k+1). (3k + 2) | a(4k+2). (6k + 5) | a(4k+3). - Jon Perry, Nov 04 2014
Enge, Hart and Johansson proved: "Every generalised pentagonal number c >= 5 is the sum of a smaller one and twice a smaller one, that is, there are generalised pentagonal numbers a, b < c such that c = 2a + b." (see link theorem 5). - Peter Luschny, Aug 26 2016
The Enge, et al. result for c >= 5 also holds for c >= 2 if 0 is included as a generalized pentagonal number. That is, 2 = 2*1 + 0. - Michael Somos, Jun 02 2018
Suggestion for title, where n actually matches the list and b-file: "Generalized pentagonal numbers: k(n)*(3*k(n) - 1)/2, where k(n) = A001057(n) = [0, 1, -1, 2, -2, 3, -3, ...], n >= 0" - Daniel Forgues, Jun 09 2018 & Jun 12 2018
Generalized k-gonal numbers are the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, with k >= 5. - Omar E. Pol, Jul 25 2018
The last digits form a symmetric cycle of length 40 [0, 1, 2, 5, ..., 5, 2, 1, 0], i.e., a(n) == a(n + 40) (mod 10) and a(n) == a(40*k - n - 1) (mod 10), 40*k > n. - Alejandro J. Becerra Jr., Aug 14 2018
Only 2, 5, and 7 are prime. All terms are of the form k*(k+1)/6, where 3 | k or 3 | k+1. For k > 6, the value divisible by 3 must have another factor d > 2, which will remain after the division by 6. - Eric Snyder, Jun 03 2022
8*a(n) is the product of two even numbers one of which is n + n mod 2. - Peter Luschny, Jul 15 2022
a(n) is the dot product of [1, 2, 3, ..., n] and repeat[1, 1/2]. a(5) = 12 = [1, 2, 3, 4, 5] dot [1, 1/2, 1, 1/2, 1] = [1 + 1 + 3 + 2 + 5]. - Gary W. Adamson, Dec 10 2022
Every nonnegative number is the sum of four terms of this sequence [S. Realis]. - N. J. A. Sloane, May 07 2023
From Peter Bala, Jan 06 2025: (Start)
The sequence terms are the exponents in the expansions of the following infinite products:
1) Product_{n >= 1} (1 - s(n)*q^n) = 1 + q + q^2 + q^5 + q^7 + q^12 + q^15 + ..., where s(n) = (-1)^(1 + mod(n+1,3)).
2) Product_{n >= 1} (1 - q^(2*n))*(1 - q^(3*n))^2/((1 - q^n)*(1 - q^(6*n))) = 1 + q + q^2 + q^5 + q^7 + q^12 + q^15 + ....
3) Product_{n >= 1} (1 - q^n)*(1 - q^(4*n))*(1 - q^(6*n))^5/((1 - q^(2*n))*(1 - q^(3*n))*(1 - q^(12*n)))^2 = 1 - q + q^2 - q^5 - q^7 + q^12 - q^15 + q^22 + q^26 - q^35 + ....
4) Product_{n >= 1} (1 - q^(2*n))^13/((1 - (-1)^n*q^n)*(1 - q^(4*n)))^5 = 1 - 5*q + 7*q^2 - 11*q^5 + 13*q^7 - 17*q^12 + 19*q^15 - + .... See Oliver, Theorem 1.1. (End)

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 7*x^4 + 12*x^5 + 15*x^6 + 22*x^7 + 26*x^8 + 35*x^9 + ...
		

References

  • Enoch Haga, A strange sequence and a brilliant discovery, chapter 5 of Exploring prime numbers on your PC and the Internet, first revised ed., 2007 (and earlier ed.), pp. 53-70.
  • Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 117.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, (to appear), section 7.2.1.4, equation (18).
  • Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 2nd ed., Wiley, NY, 1966, p. 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A080995 (characteristic function), A026741 (first differences), A034828 (partial sums), A165211 (mod 2).
Cf. A000326 (pentagonal numbers), A005449 (second pentagonal numbers), A000217 (triangular numbers).
Indices of nonzero terms of A010815, i.e., the (zero-based) indices of 1-bits of the infinite binary word to which the terms of A068052 converge.
Union of A036498 and A036499.
Sequences of generalized k-gonal numbers: this sequence (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Column 1 of A195152.
Squares in APs: A221671, A221672.
Quadrisection: A049453(k), A033570(k), A033568(k+1), A049452(k+1), k >= 0.
Cf. A002620.

Programs

  • GAP
    a:=[0,1,2,5];; for n in [5..60] do a[n]:=2*a[n-2]-a[n-4]+3; od; a; # Muniru A Asiru, Aug 16 2018
    
  • Haskell
    a001318 n = a001318_list !! n
    a001318_list = scanl1 (+) a026741_list -- Reinhard Zumkeller, Nov 15 2015
    
  • Magma
    [(6*n^2 + 6*n + 1 - (2*n + 1)*(-1)^n)/16 : n in [0..50]]; // Wesley Ivan Hurt, Nov 03 2014
    
  • Magma
    [(3*n^2 + 2*n + (n mod 2) * (2*n + 1)) div 8: n in [0..70]]; // Vincenzo Librandi, Nov 04 2014
    
  • Maple
    A001318 := -(1+z+z**2)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
    A001318 := proc(n) (6*n^2+6*n+1)/16-(2*n+1)*(-1)^n/16 ; end proc: # R. J. Mathar, Mar 27 2011
  • Mathematica
    Table[n*(n+1)/6, {n, Select[Range[0, 100], Mod[#, 3] != 1 &]}]
    Select[Accumulate[Range[0,200]]/3,IntegerQ] (* Harvey P. Dale, Oct 12 2014 *)
    CoefficientList[Series[x (1 + x + x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 04 2014 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,1,2,5,7},70] (* Harvey P. Dale, Jun 05 2017 *)
    a[ n_] := With[{m = Quotient[n + 1, 2]}, m (3 m + (-1)^n) / 2]; (* Michael Somos, Jun 02 2018 *)
  • PARI
    {a(n) = (3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8}; /* Michael Somos, Mar 24 2011 */
    
  • PARI
    {a(n) = if( n<0, n = -1-n); polcoeff( x * (1 - x^3) / ((1 - x) * (1-x^2))^2 + x * O(x^n), n)}; /* Michael Somos, Mar 24 2011 */
    
  • PARI
    {a(n) = my(m = (n+1) \ 2); m * (3*m + (-1)^n) / 2}; /* Michael Somos, Jun 02 2018 */
    
  • Python
    def a(n):
        p = n % 2
        return (n + p)*(3*n + 2 - p) >> 3
    print([a(n) for n in range(60)])  # Peter Luschny, Jul 15 2022
    
  • Python
    def A001318(n): return n*(n+1)-(m:=n>>1)*(m+1)>>1 # Chai Wah Wu, Nov 23 2024
  • Sage
    @CachedFunction
    def A001318(n):
        if n == 0 : return 0
        inc = n//2 if is_even(n) else n
        return inc + A001318(n-1)
    [A001318(n) for n in (0..59)] # Peter Luschny, Oct 13 2012
    

Formula

Euler: Product_{n>=1} (1 - x^n) = Sum_{n=-oo..oo} (-1)^n*x^(n*(3*n - 1)/2).
A080995(a(n)) = 1: complement of A090864; A000009(a(n)) = A051044(n). - Reinhard Zumkeller, Apr 22 2006
Euler transform of length-3 sequence [2, 2, -1]. - Michael Somos, Mar 24 2011
a(-1 - n) = a(n) for all n in Z. a(2*n) = A005449(n). a(2*n - 1) = A000326(n). - Michael Somos, Mar 24 2011. [The extension of the recurrence to negative indices satisfies the signature (1,2,-2,-1,1), but not the definition of the sequence m*(3*m -1)/2, because there is no m such that a(-1) = 0. - Klaus Purath, Jul 07 2021]
a(n) = 3 + 2*a(n-2) - a(n-4). - Ant King, Aug 23 2011
Product_{k>0} (1 - x^k) = Sum_{k>=0} (-1)^k * x^a(k). - Michael Somos, Mar 24 2011
G.f.: x*(1 + x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = n*(n + 1)/6 when n runs through numbers == 0 or 2 mod 3. - Barry E. Williams
a(n) = A008805(n-1) + A008805(n-2) + A008805(n-3), n > 2. - Ralf Stephan, Apr 26 2003
Sequence consists of the pentagonal numbers (A000326), followed by A000326(n) + n and then the next pentagonal number. - Jon Perry, Sep 11 2003
a(n) = (6*n^2 + 6*n + 1)/16 - (2*n + 1)*(-1)^n/16; a(n) = A034828(n+1) - A034828(n). - Paul Barry, May 13 2005
a(n) = Sum_{k=1..floor((n+1)/2)} (n - k + 1). - Paul Barry, Sep 07 2005
a(n) = A000217(n) - A000217(floor(n/2)). - Pierre CAMI, Dec 09 2007
If n even a(n) = a(n-1) + n/2 and if n odd a(n) = a(n-1) + n, n >= 2. - Pierre CAMI, Dec 09 2007
a(n)-a(n-1) = A026741(n) and it follows that the difference between consecutive terms is equal to n if n is odd and to n/2 if n is even. Hence this is a self-generating sequence that can be simply constructed from knowledge of the first term alone. - Ant King, Sep 26 2011
a(n) = (1/2)*ceiling(n/2)*ceiling((3*n + 1)/2). - Mircea Merca, Jul 13 2012
a(n) = (A008794(n+1) + A000217(n))/2 = A002378(n) - A085787(n). - Omar E. Pol, Jan 12 2013
a(n) = floor((n + 1)/2)*((n + 1) - (1/2)*floor((n + 1)/2) - 1/2). - Wesley Ivan Hurt, Jan 26 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A026741(n),
a(n) = a(n+2) - A001651(n),
a(n) = a(n+3) - A184418(n),
a(n) = a(n+4) - A007310(n),
a(n) = a(n+6) - A001651(n)*3 = a(n+6) - A016051(n),
a(n) = a(n+8) - A007310(n)*2 = a(n+8) - A091999(n),
a(n) = a(n+10)- A001651(n)*5 = a(n+10)- A072703(n),
a(n) = a(n+12)- A007310(n)*3,
a(n) = a(n+14)- A001651(n)*7. (End)
a(n) = (A007310(n+1)^2 - 1)/24. - Richard R. Forberg, May 27 2013; corrected by Zak Seidov, Mar 14 2015; further corrected by Jianing Song, Oct 24 2018
a(n) = Sum_{i = ceiling((n+1)/2)..n} i. - Wesley Ivan Hurt, Jun 08 2013
G.f.: x*G(0), where G(k) = 1 + x*(3*k + 4)/(3*k + 2 - x*(3*k + 2)*(3*k^2 + 11*k + 10)/(x*(3*k^2 + 11*k + 10) + (k + 1)*(3*k + 4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013
Sum_{n>=1} 1/a(n) = 6 - 2*Pi/sqrt(3). - Vaclav Kotesovec, Oct 05 2016
a(n) = Sum_{i=1..n} numerator(i/2) = Sum_{i=1..n} denominator(2/i). - Wesley Ivan Hurt, Feb 26 2017
a(n) = A000292(A001651(n))/A001651(n), for n>0. - Ivan N. Ianakiev, May 08 2018
a(n) = ((-5 + (-1)^n - 6n)*(-1 + (-1)^n - 6n))/96. - José de Jesús Camacho Medina, Jun 12 2018
a(n) = Sum_{k=1..n} k/gcd(k,2). - Pedro Caceres, Apr 23 2019
Quadrisection. For r = 0,1,2,3: a(r + 4*k) = 6*k^2 + sqrt(24*a(r) + 1)*k + a(r), for k >= 1, with inputs (k = 0) {0,1,2,5}. These are the sequences A049453(k), A033570(k), A033568(k+1), A049452(k+1), for k >= 0, respectively. - Wolfdieter Lang, Feb 12 2021
a(n) = a(n-4) + sqrt(24*a(n-2) + 1), n >= 4. - Klaus Purath, Jul 07 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(log(3)-1). - Amiram Eldar, Feb 28 2022
a(n) = A002620(n) + A008805(n-1). Gary W. Adamson, Dec 10 2022
E.g.f.: (x*(7 + 3*x)*cosh(x) + (1 + 5*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Aug 01 2024

A008619 Positive integers repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38
Offset: 0

Views

Author

Keywords

Comments

The floor of the arithmetic mean of the first n+1 positive integers. - Cino Hilliard, Sep 06 2003
Number of partitions of n into powers of 2 where no power is used more than three times, or 4th binary partition function (see A072170).
Number of partitions of n in which the greatest part is at most 2. - Robert G. Wilson v, Jan 11 2002
Number of partitions of n into at most 2 parts. - Jon Perry, Jun 16 2003
a(n) = #{k=0..n: k+n is even}. - Paul Barry, Sep 13 2003
Number of symmetric Dyck paths of semilength n+2 and having two peaks. E.g., a(6)=4 because we have UUUUUUU*DU*DDDDDDD, UUUUUU*DDUU*DDDDDD, UUUUU*DDDUUU*DDDDD and UUUU*DDDDUUUU*DDDD, where U=(1,1), D=(1,-1) and * indicates a peak. - Emeric Deutsch, Jan 12 2004
Smallest positive integer whose harmonic mean with another positive integer is n (for n > 0). For example, a(6)=4 is already given (as 4 is the smallest positive integer such that the harmonic mean of 4 (with 12) is 6) - but the harmonic mean of 2 (with -6) is also 6 and 2 < 4, so the two positive integer restrictions need to be imposed to rule out both 2 and -6.
Second outermost diagonal of Losanitsch's triangle (A034851). - Alonso del Arte, Mar 12 2006
Arithmetic mean of n-th row of A080511. - Amarnath Murthy, Mar 20 2003
a(n) is the number of ways to pay n euros (or dollars) with coins of one and two euros (respectively dollars). - Richard Choulet and Robert G. Wilson v, Dec 31 2007
Inverse binomial transform of A045623. - Philippe Deléham, Dec 30 2008
Coefficient of q^n in the expansion of (m choose 2)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
Binomial transform of (-1)^n*A034008(n) = [1,0,1,-2,4,-8,16,-32,...]. - Philippe Deléham, Nov 15 2009
From Jon Perry_, Nov 16 2010: (Start)
Column sums of:
1 1 1 1 1 1...
1 1 1 1...
1 1...
..............
--------------
1 1 2 2 3 3... (End)
This sequence is also the half-convolution of the powers of 1 sequence A000012 with itself. For the definition of half-convolution see a comment on A201204, where also the rule for the o.g.f. is given. - Wolfdieter Lang, Jan 09 2012
a(n) is also the number of roots of the n-th Bernoulli polynomial in the right half-plane for n>0. - Michel Lagneau, Nov 08 2012
a(n) is the number of symmetry-allowed, linearly-independent terms at n-th order in the series expansion of the Exe vibronic perturbation matrix, H(Q) (cf. Viel & Eisfeld). - Bradley Klee, Jul 21 2015
a(n) is the number of distinct integers in the n-th row of Pascal's triangle. - Melvin Peralta, Feb 03 2016
a(n+1) for n >= 3 is the diameter of the Generalized Petersen Graph G(n, 1). - Nick Mayers, Jun 06 2016
The arithmetic function v_1(n,2) as defined in A289198. - Robert Price, Aug 22 2017
Also, this sequence is the second column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018
a(n+2) is the least k such that given any k integers, there exist two of them whose sum or difference is divisible by n. - Pablo Hueso Merino, May 09 2020
Column k = 2 of A051159. - John Keith, Jun 28 2021

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 109, Eq. [6c]; p. 116, P(n,2).
  • D. Parisse, 'The tower of Hanoi and the Stern-Brocot Array', Thesis, Munich 1997

Crossrefs

Essentially same as A004526.
Harmonic mean of a(n) and A056136 is n.
a(n)=A010766(n+2, 2).
Cf. A010551 (partial products).
Cf. A263997 (a block spiral).
Cf. A289187.
Column 2 of A235791.

Programs

  • Haskell
    a008619 = (+ 1) . (`div` 2)
    a008619_list = concatMap (\x -> [x,x]) [1..]
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..100]]; // Vincenzo Librandi, Feb 04 2015
    
  • Maple
    a:= n-> iquo(n+2, 2): seq(a(n), n=0..75);
  • Mathematica
    Flatten[Table[{n,n},{n,35}]] (* Harvey P. Dale, Sep 20 2011 *)
    With[{c=Range[40]},Riffle[c,c]] (* Harvey P. Dale, Feb 23 2013 *)
    CoefficientList[Series[1/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)
    LinearRecurrence[{1, 1, -1}, {1, 1, 2}, 75] (* Robert G. Wilson v, Feb 05 2015 *)
    Table[QBinomial[n, 2, -1], {n, 2, 75}] (* John Keith, Jun 28 2021 *)
  • PARI
    a(n)=n\2+1
    
  • Python
    def A008619(n): return (n>>1)+1 # Chai Wah Wu, Jul 07 2022
  • Sage
    a = lambda n: 1 if n==0 else a(n-1)+1 if 2.divides(n) else a(n-1) # Peter Luschny, Feb 05 2015
    
  • Scala
    (2 to 99).map( / 2) // _Alonso del Arte, May 09 2020
    

Formula

Euler transform of [1, 1].
a(n) = 1 + floor(n/2).
G.f.: 1/((1-x)(1-x^2)).
E.g.f.: ((3+2*x)*exp(x) + exp(-x))/4.
a(n) = a(n-1) + a(n-2) - a(n-3) = -a(-3-n).
a(0) = a(1) = 1 and a(n) = floor( (a(n-1) + a(n-2))/2 + 1 ).
a(n) = (2*n + 3 + (-1)^n)/4. - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} binomial(j, i)*(-2)^i. - Paul Barry, Aug 26 2003
E.g.f.: ((1+x)*exp(x) + cosh(x))/2. - Paul Barry, Sep 13 2003
a(n) = A108299(n-1,n)*(-1)^floor(n/2) for n > 0. - Reinhard Zumkeller, Jun 01 2005
a(n) = A108561(n+2,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
a(n) = A125291(A125293(n)) for n>0. - Reinhard Zumkeller, Nov 26 2006
a(n) = ceiling(n/2), n >= 1. - Mohammad K. Azarian, May 22 2007
INVERT transformation yields A006054 without leading zeros. INVERTi transformation yields negative of A124745 with the first 5 terms there dropped. - R. J. Mathar, Sep 11 2008
a(n) = A026820(n,2) for n > 1. - Reinhard Zumkeller, Jan 21 2010
a(n) = n - a(n-1) + 1 (with a(0)=1). - Vincenzo Librandi, Nov 19 2010
a(n) = A000217(n) / A110654(n). - Reinhard Zumkeller, Aug 24 2011
a(n+1) = A181971(n,n). - Reinhard Zumkeller, Jul 09 2012
1/(1+2/(2+3/(3+4/(4+5/(5+...(continued fraction))))) = 1/(e-1), see A073333. - Philippe Deléham, Mar 09 2013
a(n) = floor(A000217(n)/n), n > 0. - L. Edson Jeffery, Jul 26 2013
a(n) = n*a(n-1) mod (n+1) = -a(n-1) mod (n+1), the least positive residue modulo n+1 for each expression for n > 0, with a(0) = 1 (basically restatements of Vincenzo Librandi's formula). - Rick L. Shepherd, Apr 02 2014
a(n) = (a(0) + a(1) + ... + a(n-1))/a(n-1), where a(0) = 1. - Melvin Peralta, Jun 16 2015
a(n) = Sum_{k=0..n} (-1)^(n-k) * (k+1). - Rick L. Shepherd, Sep 18 2020
a(n) = a(n-2) + 1 for n >= 2. - Vladimír Modrák, Sep 29 2020
a(n) = A004526(n)+1. - Chai Wah Wu, Jul 07 2022

Extensions

Additional remarks from Daniele Parisse
Edited by N. J. A. Sloane, Sep 06 2009
Partially edited by Joerg Arndt, Mar 11 2010

A005132 Recamán's sequence (or Recaman's sequence): a(0) = 0; for n > 0, a(n) = a(n-1) - n if nonnegative and not already in the sequence, otherwise a(n) = a(n-1) + n.

Original entry on oeis.org

0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, 42, 63, 41, 18, 42, 17, 43, 16, 44, 15, 45, 14, 46, 79, 113, 78, 114, 77, 39, 78, 38, 79, 37, 80, 36, 81, 35, 82, 34, 83, 33, 84, 32, 85, 31, 86, 30, 87, 29, 88, 28, 89, 27, 90, 26, 91, 157, 224, 156, 225, 155
Offset: 0

Views

Author

N. J. A. Sloane and Simon Plouffe, May 16 1991

Keywords

Comments

The name "Recamán's sequence" is due to N. J. A. Sloane, not the author!
I conjecture that every number eventually appears - see A057167, A064227, A064228. - N. J. A. Sloane. That was written in 1991. Today I'm not so sure that every number appears. - N. J. A. Sloane, Feb 26 2017
As of Jan 25 2018, the first 13 missing numbers are 852655, 930058, 930557, 964420, 966052, 966727, 969194, 971330, 971626, 971866, 972275, 972827, 976367, ... For further information see the "Status Report" link. - Benjamin Chaffin, Jan 25 2018
From David W. Wilson, Jul 13 2009: (Start)
The sequence satisfies [1] a(n) >= 0, [2] |a(n)-a(n-1)| = n, and tries to avoid repeats by greedy choice of a(n) = a(n-1) -+ n.
This "wants" to be an injection on N = {0, 1, 2, ...}, as it attempts to avoid repeats by choice of a(n) = a(n-1) + n when a(n) = a(n-1) - n is a repeat.
Clearly, there are injections satisfying [1] and [2], e.g., a(n) = n(n+1)/2.
Is there a lexicographically earliest injection satisfying [1] and [2]? (End)
Answer: Yes, of course: The set of injections satisfying [1] and [2] is not empty, so there's a lexicographically least element. More concretely, it starts with the same 23 terms a(0..22) which are known to be minimal, but after a(22) = 41 it has to go on with a(23) = 41 + 23 = 64, since choosing "-" here necessarily yields a non-injective sequence. See A171884. - M. F. Hasler, Apr 01 2019
It appears that a(n) is also the value of "x" and "y" of the endpoint of the L-toothpick structure mentioned in A210606 after n-th stage. - Omar E. Pol, Mar 24 2012
Of course this is not a permutation of the integers: the first repeated term is 42 = a(24) = a(20). - M. F. Hasler, Nov 03 2014. Also 43 = a(18) = a(26). - Jon Perry, Nov 06 2014
Of all the sequences in the OEIS, this one is my favorite to listen to. Click the "listen" button at the top, set the instrument to "103. FX 7 (Echoes)", click "Save", and open the MIDI file with a program like QuickTime Player 7. - N. J. A. Sloane, Aug 08 2017
This sequence cycles clockwise around the OEIS logo. - Ryan Brooks, May 09 2020

Examples

			Consider n=6. We have a(5)=7 and try to subtract 6. The result, 1, is certainly positive, but we cannot use it because 1 is already in the sequence. So we must add 6 instead, getting a(6) = 7 + 6 = 13.
		

References

  • Alex Bellos and Edmund Harriss, Visions of the Universe (2016), Unnumbered pages. Includes Harriss's illustration of the first 65 steps drawn as a spiral.
  • Benjamin Chaffin, N. J. A. Sloane, and Allan Wilks, On sequences of Recaman type, paper in preparation, 2006.
  • Bernardo Recamán Santos, letter to N. J. A. Sloane, Jan 29 1991
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A057165 (addition steps), A057166 (subtraction steps), A057167 (steps to hit n), A008336, A046901 (simplified version), A064227 (records for reaching n), A064228 (value of n that take a record number of steps to reach), A064284 (no. of times n appears), A064290 (heights of terms), A064291 (record highs), A119632 (condensed version), A063733, A079053, A064288, A064289, A064387, A064388, A064389, A228474 (bidirectional version).
A065056 gives partial sums, A160356 gives first differences.
A row of A066201.
Cf. A171884 (injective variant).
See A324784, A324785, A324786 for the "low points".

Programs

  • Haskell
    import Data.Set (Set, singleton, notMember, insert)
    a005132 n = a005132_list !! n
    a005132_list = 0 : recaman (singleton 0) 1 0 where
       recaman :: Set Integer -> Integer -> Integer -> [Integer]
       recaman s n x = if x > n && (x - n) `notMember` s
                          then (x-n) : recaman (insert (x-n) s) (n+1) (x-n)
                          else (x+n) : recaman (insert (x+n) s) (n+1) (x+n)
    -- Reinhard Zumkeller, Mar 14 2011
    
  • MATLAB
    function a=A005132(m)
    % m=max number of terms in a(n). Offset n:0
    a=zeros(1,m);
    for n=2:m
        B=a(n-1)-(n-1);
        C=0.^( abs(B+1) + (B+1) );
        D=ismember(B,a(1:n-1));
        a(n)=a(n-1)+ (n-1) * (-1)^(C + D -1);
    end
    % Adriano Caroli, Dec 26 2010
    
  • Maple
    h := array(1..100000); maxt := 100000; a := [1]; ad := [1]; su := []; h[1] := 1; for nx from 2 to 500 do t1 := a[nx-1]-nx; if t1>0 and h[t1] <> 1 then su := [op(su), nx]; else t1 := a[nx-1]+nx; ad := [op(ad), nx]; fi; a := [op(a),t1]; if t1 <= maxt then h[t1] := 1; fi; od: # a is A005132, ad is A057165, su is A057166
    A005132 := proc(n)
        option remember; local a, found, j;
        if n = 0 then return 0 fi;
        a := procname(n-1) - n ;
        if a <= 0 then return a+2*n fi;
        found := false;
        for j from 0 to n-1 while not found do
            found := procname(j) = a;
        od;
        if found then a+2*n else a fi;
    end:
    seq(A005132(n), n=0..70); # R. J. Mathar, Apr 01 2012 (reformatted by Peter Luschny, Jan 06 2019)
  • Mathematica
    a = {1}; Do[ If[ a[ [ -1 ] ] - n > 0 && Position[ a, a[ [ -1 ] ] - n ] == {}, a = Append[ a, a[ [ -1 ] ] - n ], a = Append[ a, a[ [ -1 ] ] + n ] ], {n, 2, 70} ]; a
    (* Second program: *)
    f[s_List] := Block[{a = s[[ -1]], len = Length@s}, Append[s, If[a > len && !MemberQ[s, a - len], a - len, a + len]]]; Nest[f, {0}, 70] (* Robert G. Wilson v, May 01 2009 *)
    RecamanSeq[i_Integer] := Fold[With[{lst=Last@#, len=Length@#}, Append[#, If[lst > len && !MemberQ[#, lst - len], lst - len, lst + len]]] &, {0}, Range@i]; RecamanSeq[10^5] (* Mikk Heidemaa, Nov 02 2024 *)
  • PARI
    a(n)=if(n<2,1,if(abs(sign(a(n-1)-n)-1)+setsearch(Set(vector(n-1,i,a(i))),a(n-1)-n),a(n-1)+n,a(n-1)-n))  \\ Benoit Cloitre
    
  • PARI
    A005132(N=1000,show=0)={ my(s,t); for(n=1,N, s=bitor(s,1<M. F. Hasler, May 11 2008, updated M. F. Hasler, Nov 03 2014
    
  • Python
    l=[0]
    for n in range(1, 101):
        x=l[n - 1] - n
        if x>0 and not x in l: l+=[x, ]
        else: l+=[l[n - 1] + n]
    print(l) # Indranil Ghosh, Jun 01 2017
    
  • Python
    def recaman(n):
      seq = []
      for i in range(n):
        if(i == 0): x = 0
        else: x = seq[i-1]-i
        if(x>=0 and x not in seq): seq+=[x]
        else: seq+=[seq[i-1]+i]
      return seq
    print(recaman(1000)) # Ely Golden, Jun 14 2018
    
  • Python
    from itertools import count, islice
    def A005132_gen(): # generator of terms
        a, aset = 0, set()
        for n in count(1):
            yield a
            aset.add(a)
            a = b if (b:=a-n)>=0 and b not in aset else a+n
    A005132_list = list(islice(A005132_gen(),30)) # Chai Wah Wu, Sep 15 2022

Formula

a(k) = A000217(k) - 2*Sum_{i=1..n} A057166(i), for A057166(n) <= k < A057166(n+1). - Christopher Hohl, Jan 27 2019

Extensions

Allan Wilks, Nov 06 2001, computed 10^15 terms of this sequence. At this point all the numbers below 852655 had appeared, but 852655 = 5*31*5501 was missing.
After 10^25 terms of A005132 the smallest missing number is still 852655. - Benjamin Chaffin, Jun 13 2006
Even after 7.78*10^37 terms, the smallest missing number is still 852655. - Benjamin Chaffin, Mar 28 2008
Even after 4.28*10^73 terms, the smallest missing number is still 852655. - Benjamin Chaffin, Mar 22 2010
Even after 10^230 terms, the smallest missing number is still 852655. - Benjamin Chaffin, 2018
Changed "positive" in definition to "nonnegative". - N. J. A. Sloane, May 04 2020

A005649 Expansion of e.g.f. (2 - e^x)^(-2).

Original entry on oeis.org

1, 2, 8, 44, 308, 2612, 25988, 296564, 3816548, 54667412, 862440068, 14857100084, 277474957988, 5584100659412, 120462266974148, 2772968936479604, 67843210855558628, 1757952715142990612, 48093560991292628228, 1385244691781856307124
Offset: 0

Views

Author

Keywords

Comments

Exponential self-convolution of numbers of preferential arrangements.
Number of compatible bipartitional relations on a set of cardinality n. - Ralf Stephan, Apr 27 2003
Stirling transform of A000142, shifted left one place: 1, 2, 6, 24, 120, 720, ... - Philippe Deléham, May 17 2005; corrected by Ilya Gutkovskiy, Jul 25 2018
With an extra 1 at the beginning, coefficients of the formal (divergent) series expansion at infinity of Sum_{k>=0} 1/binomial(x,k) = 1+1/x+2/x^2+8/x^3+... Also Sum_{k>=0} k!/x^k Product_{i=1..k-1} 1/(1-i/x) yields a generating function in 1/x. - Roland Bacher, Nov 21 2000
Stirling-Bernoulli transform of A001057: 1, -1, 2, -2, 3, -3, 4, ... - Philippe Deléham, May 27 2015
a(n) is the total number of open sets summed over all chain topologies that can be placed on an n-set. A chain topology is a topology whose open sets can be totally ordered by inclusion. - Geoffrey Critzer, Apr 06 2017
From Gus Wiseman, Jun 10 2020: (Start)
Also the number of length n + 1 sequences covering an initial interval of positive integers with no adjacent equal parts (anti-runs). For example, the a(0) = 1 through a(2) = 8 anti-runs are:
(1) (1,2) (1,2,1)
(2,1) (1,2,3)
(1,3,2)
(2,1,2)
(2,1,3)
(2,3,1)
(3,1,2)
(3,2,1)
Also the number of ordered set partitions of {1,...,n + 1} with no two successive vertices in the same block. For example, the a(0) = 1 through a(2) = 8 ordered set partitions are:
{{1}} {{1},{2}} {{1,3},{2}}
{{2},{1}} {{2},{1,3}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
{{2},{3},{1}}
{{3},{1},{2}}
{{3},{2},{1}}
(End)
From Manfred Boergens, Feb 24 2025: (Start)
a(n+1) is the n-th row sum in A380977.
Number of surjections f with domain [n+1] and f(n+1)!=f(j) for j
Number of (n+1)-tuples containing all elements of a set, with a unique last element.
Consider an urn with balls of pairwise different colors. a(n) is the number of (n+1)-sequences of draws with replacement completing the covering of all colors with the last draw, the number of colors running from 1 to n+1.
(End)

Examples

			a(2)=8 gives the number of 3-tuples containing all elements of a set [n] with n<=3 and a unique last element: 112, 221, 123, 213, 132, 312, 231, 321. - _Manfred Boergens_, Feb 24 2025
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000670.
2*A083410(n)=a(n), if n>0.
Pairwise sums of A052841 and also of A089677.
Anti-run compositions are counted by A003242.
A triangle counting maximal anti-runs of compositions is A106356.
Anti-runs of standard compositions are counted by A333381.
Adjacent unequal pairs in standard compositions are counted by A333382.
Cf. A380977.

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    f[n_] := Sum[(i + j)^n/2^(2 + i + j), {i, 0, Infinity}, {j, 0, Infinity}]; Array[f, 20, 0] (* Vladimir Reshetnikov, Dec 31 2008 *)
    a[n_] := (-1)^n (PolyLog[-n-1, 2] - PolyLog[-n, 2])/4; Array[f, 20, 0] (* Vladimir Reshetnikov, Jan 23 2011 *)
    Range[0, 19]! CoefficientList[Series[(2 - Exp@ x)^-2, {x, 0, 19}], x] (* Robert G. Wilson v, Jan 23 2011 *)
    nn = 19; Range[0, nn]! CoefficientList[Series[1 + D[u^2 (Exp[z] - 1)/(1 - u (Exp[z] - 1)), u] /. u -> 1, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 06 2017 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],FreeQ[Differences[#],0]&]],{n,0,6}] (* Gus Wiseman, Jun 10 2020 *)
    With[{nn=20},CoefficientList[Series[1/(2-E^x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 02 2021 *)
    Table[Sum[(m+1)! StirlingS2[n,m],{m,0,n}],{n,0,19}] (* Manfred Boergens, Feb 24 2025 *)
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    makelist(sum(binomial(n,k)*t(k)*t(n-k),k,0,n),n,0,20);
    /* Emanuele Munarini, Oct 02 2012 */
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(1/(1-y)^2,y,exp(x+x*O(x^n))-1),n))
    
  • PARI
    a(n)=polcoeff(sum(m=0, n,(2*m)!/m!*x^m/prod(k=1, m,1+(m+k)*x+x*O(x^n))), n)
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 03 2013
    

Formula

E.g.f.: 1/(2-exp(x))^2.
a(n) = (A000670(n) + A000670(n+1)) / 2. - Philippe Deléham, May 16 2005
a(n) = D^n(1/(1-x)^2) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A000670 and A052841. - Peter Bala, Nov 25 2011
E.g.f.: 1/(2-exp(x))^2 = 1/(G(0) + 4), G(k) = 1-4/((2^k)-x*(4^k)/((2^k)*x-(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011
O.g.f.: Sum_{n>=0} (2*n)!/n! * x^n / Product_{k=1..n} (1 + (n+k)*x). - Paul D. Hanna, Jan 03 2013
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1/G(0) where G(k) = 1 - x*(k+2)/( 1 - 2*x*(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 23 2013
a(n) = Sum_{k = 0..n} A163626(n,k) * A001057(k+1). - Philippe Deléham, May 27 2015
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n) = Sum_{k=0..n} Stirling2(n,k)*(k + 1)!. - Ilya Gutkovskiy, Jul 25 2018
From Seiichi Manyama, Nov 19 2023: (Start)
a(0) = 1; a(n) = Sum_{k=1..n} (k/n + 1) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 2*a(n-1) - 2*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). (End)
Showing 1-10 of 107 results. Next