A340566 Square array, read by descending antidiagonals; T(n,k) is A001057(n) + A001057(k)*i, converted to complex binary (base -1 + i), where i=sqrt(-1).
0, 11, 1, 111, 1110, 11101, 1110100, 111010, 10, 1100, 100, 1110101, 110, 1111, 11100, 1110111, 101, 11001, 111011, 11111, 1101, 110011, 1010, 11101001, 1000, 11101011, 111010010, 10001, 1110000, 111110, 1110110, 111000, 11000, 111010110, 11110, 111010000
Offset: 0
Examples
Square array T(n,k) begins: \k 0 1 2 3 4 5 6 ... n\ 0| 0 11 111 1110100 100 1110111 110011 ... 1| 1 1110 111010 1110101 101 1010 111110 ... 2| 11101 10 110 11001 11101001 1110110 110010 ... 3| 1100 1111 111011 1000 111000 1011 111111 ... 4| 11100 11111 11101011 11000 11101000 11011 11101111 ... 5| 1101 111010010 111010110 1001 111001 1100110 100010 ... 6| 10001 11110 11101010 1110100101 10101 11010 11101110 ...
References
- T. Jamil, Complex Binary Number System, Springer, 2013.
Programs
-
PARI
A340566(n,k)={my(A001057(x)=if(x%2,x\2+1,-x/2),V=vecsum(Vec(matconcat(apply(w->my(Y=if(w,A001057(k), A001057(n)+A001057(k)));if(Y, my(X=floor(4^(2*logint(abs(Y), 4)+5)/5));Vecrev(binary(shift(fromdigits(apply(z->z+(10*(z>1)), digits(bitxor(Y+X,X),4)),16),w)))),[0,1])~)~))~); while(vecmax(V)>1,my(Z=Vec(select(x->x>1,V,1)));for(x=1,#Z,my(z=Z[x]);if(V[z]<=1,,(z+2<=#V)&&(V[z+1]>1)&&V[z+2],for(j=z,z+2,V[j]-=2^(j!=(z+2))),(z+4<=#V)&&vecmin(V[z+2..z+4]),V[z]-=2;for(j=z+2,z+4,V[j]-=1),z+1>#V,V[z]-=2;V=concat(V,[0,1,1]),V[z]-=2;for(j=z+2,z+3,if(j<=#V,V[j]+=1,V=concat(V,1))))));fromdigits(Vecrev(V))}
-
PARI
{ T(n,k) = my(z=n\/2*-(-1)^n + k\/2*-(-1)^k*I, ret=List([])); while(z, my(bit=(real(z)+imag(z))%2); listput(ret,bit); z=(z-bit)/(I-1)); fromdigits(Vecrev(ret)); } \\ Kevin Ryde, Jan 12 2021
Comments